

UNIVERSITY AVENUE APARTMENTS

6418 UNIVERSITY AVENUE MIDDLETON, WI 53562

GENERAL IMPLEMENTATION PLAN DRAWINGS

GBA PROJECT NO. 202303

OWNER: **RIPPLE MANAGEMENT**

3801 REGENT STREET MADISON, WI 53705 PHONE: (608) 238-2044 CONTACT: JÚLIO MARTINEZ EMAIL: julio@ripplerents.com

ARCHITECT/INTERIOR DESIGNER: GARY BRINK AND ASSOCIATES, INC 2248 DEMING WAY, SUITE 120 MIDDLETON, WI 53762 PHONE: (608) 829-1750 CONTACT: JÉFFREY T. BRENKUS EMAIL: jeff.brenkus@garybrink.com

VICINITY LOCATION MAP:

CIVIL/LANDSCAPE: WYSER ENGINEERING 300 EAST FRONT STREET MOUNT HOREB, WI 53572

PHONE: (608) 437.1980 CONTACT: WADE WYSE EMAIL: wade.wyse@wyserengineering.com

COVER	PROJECT COVER SHEET
A-00	AERIAL VIEWS
A-01	ARCHITECTURAL SITE PLAN
A-02	LOWER LEVEL PLAN
A-03	FIRST FLOOR PLAN
A-04	SECOND FLOOR PLAN
A-05	THIRD FLOOR PLAN
A-06	FOURTH FLOOR PLAN
A-07	FIFTH FLOOR PLAN
A-08	EXTERIOR ELEVATIONS
A-09	SHADE & SHADOW STUDIES
C100	SITE PLAN
C200	GRADING PLAN
C201	DETAIL GRADING PLAN
C300	UTILITY PLAN
C400	DETAILS
Pg=1-11	SITE LIGHTING LAYOUT & PHOTOMETRIC PLAN
	Include landscaping plan

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

PROJECT LOCATION MAP:

PROJECT COVER SHEET

DATE:

SCALE:

GIP DRAWING SET

06/20/23

06/20/2023

AS NOTED

S

APARTMEN

AERIAL VIEW OF SITE

<u>AERIAL VIEW OF SITE</u>

<u>AERIAL VIEW OF SITE</u>

<u>AERIAL VIEW OF SITE</u>

AERIAL VIEWS

S

GBA

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

PROJECI :	UNIVERSITY AVE	6418 UNIVERSITY AVENUE	MIDDLETON, WISCONSIN	CLIENT:	RIPPLE MANAGEI	3801 REGENT STREET	MADISON. WISCONSIN
0 202 Any di proper	2 GARY BR uplication, re written auth	INK & AS production orization	SOC. n, or use is receive	by any c d from C	ther party is GARY BRINI	prohibite K & ASSC	d unles)C.

PR(94 C PR(
© 2022 GARY BRINK & ASSOC. Any duplication, reproduction, or use by any other party is prohibited unless proper written authorization is received from GARY BRINK & ASSOC.						
PROJECT:	202303					
DRAWN BY:	Author					
DATE:	06/20/23					
SCALE:	AS NOTED					

LAKEVIEW AVENUE

UNIVERSITY AVENUE

0' 8' |_____|

GB	A
architecture	design

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

CAS	ASTLE ROCK APARTMENTS							
	TOTAL	AREA	UG PARKING	SURF. PARKING	TOTAL PARKING			
	0	18,112	45	40	85			
	16	15,326	-	5	5			
	19	16,915	-	-	0			
	19	16,915	-	-	0			
	19	16,915	-	-	0			
	17	16,142	-	-	0			
	90	82,213	45	45	90			

6' 	32'	

PROJECT: UNIVERSITY AVENUE APARTMEN	6418 UNIVERSITY AVENUE	MIDDLETON, WISCONSIN	CLIENT:	RIPPLE MANAGEMENT	3801 REGENT STREET	
© 2022 GARY BR Any duplication, re proper written auth	INK & AS production norization i	SOC. n, or use is receive	by any (d from (other party i GARY BRIN	s prohibite IK & ASSC	d unle DC.
PROJE	ECT	`:		20	0230)3

S

PROJECT:	202303
DRAWN BY	: Author
DATE:	06/20/23
SCALE:	AS NOTED

ARCHITECTURAL SITE PLAN

21 A-08

06/20/2023

GIP DRAWING SET

ROOM TYPE	AREA
STUDIO (25)	482 sq
1-BR-A (18)	520 sq
1-BR-B (10)	593 SF
1-BR-C (10)	631 sq
1-BR-D (4)	777 sq
1-BR W/ DEN (4)	970 sq
1-BR W/ DEN (5)	777 sq
2-BR + 2BA-A (5)	1002 sq
2-BR + 2BA-B (5)	1005 sq
2-BR + 1-BA (4)	842 sq
LOUNGE	163 sf
BIZ CENTER	127 sf
RESIDENT STORAGE	154 sf
ELEVATOR LOBBY	178 sf
DEFLICE / DECVCLINIC	52 cf
REFUSE/RECYCLING	55 31
REFUSE/RECYCLING	

 \odot

0

PROJECT: UNIVERSITY AVENUE APARTMEN	6418 UNIVERSITY AVENUE		CLIENT:	RIPPLE MANAGEMENT	3801 REGENT STREET	MADISON, WISCONSIN
Any duplication, re proper written auth	productio orization	n, or use is receive	by any c d from C	ther party is GARY BRIN	prohibite K & ASSC	d unless)C.
PROJE	CT	`: 		20)23()3
DRAW	/N :	BY	:	A	uth	or
DATE	:			./60 100	20/2	23
SCALI	Ξ:		AS	S NC) TE	D

S

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

UNIVERSITY AVENUE

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

ROOM TYPE	AREA
STUDIO (25)	482 sq
1-BR-A (18)	520 sq
1-BR-B (10)	593 SF
1-BR-C (10)	631 sq
1-BR-D (4)	777 sq
1-BR W/ DEN (4)	970 sq
1-BR W/ DEN (5)	777 sq
2-BR + 2BA-A (5)	1002 sq
2-BR + 2BA-B (5)	1005 sq
2-BR + 1-BA (4)	842 sq
LOUNGE	163 sf
BIZ CENTER	127 sf
RESIDENT STORAGE	154 sf
ELEVATOR LOBBY	178 sf

06/20/2023

GIP DRAWING SET

FIRST FLOOR PLAN

I / A-08

4 / A-08

ROOM TYPE	AREA
STUDIO (25)	482 sq
1-BR-A (18)	520 sq
1-BR-B (10)	593 SF
1-BR-C (10)	631 sq
1-BR-D (4)	777 sq
1-BR W/ DEN (4)	970 sq
1-BR W/ DEN (5)	777 sq
2-BR + 2BA-A (5)	1002 sq
2-BR + 2BA-B (5)	1005 sq
2-BR + 1-BA (4)	842 sq
LOUNGE	163 sf
BIZ CENTER	127 sf
RESIDENT STORAGE	154 sf
ELEVATOR LOBBY	178 sf
REFUSE/RECYCLING	53 sf

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

<section-header>

 Image: Section of the section of t

GIP DRAWING SET

S

SECOND FLOOR PLAN

06/20/2023

21 A-08

I / A-08

ROOM TYPE	AREA
STUDIO (25)	482 sq
1-BR-A (18)	520 sq
1-BR-B (10)	593 SF
1-BR-C (10)	631 sq
1-BR-D (4)	777 sq
1-BR W/ DEN (4)	970 sq
1-BR W/ DEN (5)	777 sq
2-BR + 2BA-A (5)	1002 sq
2-BR + 2BA-B (5)	1005 sq
2-BR + 1-BA (4)	842 sq
LOUNGE	163 sf
BIZ CENTER	127 sf
RESIDENT STORAGE	154 sf
ELEVATOR LOBBY	178 sf
REFUSE/RECYCLING	53 sf

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

THIRD FLOOR PLAN

| / A-08

41 A-08

ROOM TYPE	AREA
STUDIO (25)	482 sq
1-BR-A (18)	520 sq
1-BR-B (10)	593 SF
1-BR-C (10)	631 sq
1-BR-D (4)	777 sq
1-BR W/ DEN (4)	970 sq
1-BR W/ DEN (5)	777 sq
2-BR + 2BA-A (5)	1002 sq
2-BR + 2BA-B (5)	1005 sq
2-BR + 1-BA (4)	842 sq
LOUNGE	163 sf
BIZ CENTER	127 sf
RESIDENT STORAGE	154 sf
ELEVATOR LOBBY	178 sf
REFUSE/RECYCLING	53 sf

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

S

FOURTH FLOOR PLAN

I / A-08

ROOM TYPE	AREA
STUDIO (25)	482 sq
1-BR-A (18)	520 sq
1-BR-B (10)	593 SF
1-BR-C (10)	631 sq
1-BR-D (4)	777 sq
1-BR W/ DEN (4)	970 sq
1-BR W/ DEN (5)	777 sq
2-BR + 2BA-A (5)	1002 sq
2-BR + 2BA-B (5)	1005 sq
2-BR + 1-BA (4)	842 sq
LOUNGE	163 sf
BIZ CENTER	127 sf
RESIDENT STORAGE	154 sf
ELEVATOR LOBBY	178 sf
REFUSE/RECYCLING	53 sf

0' ______

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

FIFTH FLOOR PLAN

2 SOUTH ELEVATION 3/32" = 1'-0"

F	Provide					
E	levations				7	
<mark>۲</mark>	per County	EVIER				_
	and City	ACTUAL	GRAPHIC	FINISH TAG	DESCRIPTION	_
	Datum ³³⁴			BR-I	<u>BRICK</u> MANUFACTURER: GLEN-GERY COLOR: JAMESTOWN FINISH: SAND	
	FIFTH FLOOR 42' - 8"			EIFS-I	<u>EIFS</u> MANUFACTURER: DRYVIT COLOR: INTERACTIVE CREAM (SW 6113) FINISH: WEATHERLASTIC SMOOTH	
	32' - 0"			STN-1	STONE VENEER MANUFACTURER: BUECHEL STONE COLOR: SILVERDALE LIMESONE FINISH: WEATHERLASTIC SMOOTH VARYING SIZES	
BR-1	SECOND FLOOR			MTL-I	METAL PANEL SIDING MANUFACTURER: PAC-CLAD COLOR: BURNISHED SLATE FINISH: SMOOTH, FLUSH AND REVEAL VARYING PANEL WIDTHS (7"-12")	
	FIRST FLOOR			TRM-1	METAL TRIM MANUFACTURER: PAC-CLAD COLOR: BURNISHED SLATE FINISH: SMOOTH	
				TRM-2	COMPOSITE TRIM MANUFACTURER: LP SMARTSIDE COLOR: TO MATCH BURNISHED SLATE FINISH: CEDAR TEXTURE	
	-10' - 8"			WD-I	WOOD-LOOK COMPOSITE SIDING MANUFACTURER: LP SMARTSIDE, 38 SERIES COLOR: TO MATCH BURNISHED SLATE FINISH: CEDAR TEXTURE	
IRM-1	<u>ROOF</u>			WD-2	WOOD-LOOK SOFFIT & UNDERSIDE OF PATIOS MANUFACTURER: CERTAINTEED, 150F SERIES COLOR: FONTHILL CHERRY (8422) FINISH: CEDAR TEXTURE	
·	FIFTH FLOOR 42' - 8"			WIN-1	METAL WINDOWS MANUFACTURER: INTUS, SUPERA SERIES COLOR: DARK BRONZE FINISH: MATTE	
	F <u>OURTH FLOOR</u> 32' - 0"			WIN-2	METAL PATIO DOORS MANUFACTURER: INTUS, SUPERA SERIES COLOR: DARK BRONZE FINISH: MATTE	
				SF-I	METAL STOREFRONT SYSTEM MANUFACTURER: KAWNEER COLOR: DARK BRONZE FINISH: MATTE	
	S <u>ECOND FLOOR</u> 10' - 8"					

Include reference to -NAVD88 elevation (typ).

© 2022 GARY BRINK & ASSOC. Any duplication, reproduction, or use by any other party is prohibited unles proper written authorization is received from GARY BRINK & ASSOC.			
PROJECT:	202303		
DRAWN BY:	Author		
DATE:	06/20/23		
SCALE: AS	S NOTED		

06/20/2023

GIP DRAWING SET

EXTERIOR ELEVATIONS

MIDDLETON, WI 53562

(608) 829-1750

www.garybrink.com

WINTER SOLSTICE - 10:00 AM

<u>EQUINOX - 9:00 AM</u>

SUMMER SOLSTICE - 8:00 AM

WINTER SOLSTICE - 12:00 PM

EQUINOX - 12:00 PM

SUMMER SOLSTICE - 12:00 PM

WINTER SOLSTICE - 5:00 PM

2248 DEMING WAY. STE. 120 MIDDLETON, WI 53562 (608) 829-1750 www.garybrink.com

202303 Author 06/20/23 DRAWN BY: DATE: AS NOTED SCALE:

06/20/2023

GIP DRAWING SET

SHADE & SHADOW STUDIES

LEGEND (PROPOSED)

	PROPOSED PROPERTY BOUNDARY
· · ·	EASEMENT
	BUILDING FOOTPRINT
	18" CURB AND GUTTER
	ASPHALT PAVEMENT
	CONCRETE PAVEMENT

NORTH

GENERAL NOTES

- 1. UNDERLYING SITE CONTOURS AND INFORMATION BASED ON TOPOGRAPHIC & UTILITY DATA AS SURVEYED BY WYSER ENGINEERING ON THE WEEKS OF APRIL 6 AND MAY 31, 2023. WYSER ENGINEERING SHALL NOT BE HELD RESPONSIBLE FOR ANY ERRORS OR OMISSIONS THAT MAY ARISE AS A RESULT OF ERRONEOUS OR INCOMPLETE INFORMATION PROVIDED BY OTHERS. CONTRACTOR TO CONFIRM ALL ELEVATIONS, GENERAL DRAINAGE AND EARTHWORK REQUIREMENTS PRIOR TO CONSTRUCTION.
- 2. THE BENCHMARK LOCATIONS ARE SHOWN FOR REFERENCE ONLY ON THIS PLAN. THE ELEVATIONS FOR THE SURVEY ARE BASED ON PUBLISHED ELEVATIONS FOR CITY OF MIDDLETON HYDRANT H12090. PRIOR TO SETTING SITE ELEVATIONS, THE CONTRACTOR SHALL CHECK INTO THE BENCHMARKS SHOWN. CONTRACTOR ASSUMES RISK ASSOCIATED WITH BENCHMARK TRANSFER ONTO THE SITE.
- 3. CONTRACTOR TO OBTAIN APPROPRIATE PERMITS FOR STREET OPENINGS & TO WORK WITHIN THE CITY'S LAND IF REQUIRED. 4. WYSER ENGINEERING SHALL BE HELD HARMLESS AND DOES NOT WARRANT ANY DEVIATIONS BY THE OWNER OR CONTRACTOR FROM THE APPROVED CONSTRUCTION PLANS THAT MAY RESULT IN DISCIPLINARY ACTIONS BY REGULATORY AGENCIES.
- 5. IF ANY ERRORS, DISCREPANCIES, OR OMISSIONS WITHIN THE PLAN BECOME APPARENT, IT SHALL BE BROUGHT TO THE
- 6. ALL MUNICIPAL UTILITY CONNECTIONS, WORK IN ROW, PUBLIC OUTLOTS AND PUBLIC EASEMENTS SHALL BE IN ACCORDANCE

		/YSE igineerii	ER NG
C & UTILITY DATA AS SURVEYED BY WYSER NEERING SHALL NOT BE HELD RESPONSIBLE FOR S OR INCOMPLETE INFORMATION PROVIDED BY E AND EARTHWORK REQUIREMENTS PRIOR TO			
S PLAN. THE ELEVATIONS FOR THE SURVEY ARE 12090. PRIOR TO SETTING SITE ELEVATIONS, THE OR ASSUMES RISK ASSOCIATED WITH BENCHMARK			
& TO WORK WITHIN THE CITY'S LAND IF REQUIRED. IT ANY DEVIATIONS BY THE OWNER OR ISULT IN DISCIPLINARY ACTIONS BY REGULATORY			
IE APPARENT, IT SHALL BE BROUGHT TO THE ICATION OR REDESIGN MAY OCCUR. AND PUBLIC EASEMENTS SHALL BE IN ACCORDANCE			
			ЧПЕ
			ITY AVEN 53562
			UNIVERS ETON, WI
			6418 MIDDLE
EVEL IN SOUTHEAST CORNER OF BUILDING): 45		, WI	
		JNTY	
	MEN	COL	
	ILOPI	DANE	
	DEVE	ON, I	
	<pre> KEI </pre>	DLET	
	ROCI	MIDI	
		Y OF	le: LAN
	CAS	CITY	Sheet Tit SITE P
	Revisions: No. Date	: Description:	
	Graphic Scale	0'5'10'	20' 30'
	Number Set Type	23-1026 GDP	
DIGGERS HOTLINE	Date Issued	06/19/20	023
Hearing Impaired TDD (800) 542-2289 www.DiggersHotline.com	Sheet Number	C10	00

× ×.350

Ì

 \bigcirc

UNIVERSITY PURCH

BM-2

on sidewalk at building overhang.

```
PROPOSED BUILDING
FIRST FLOOR = 921.00
```

GARAGE = 911.50 GARAGE FLOOR SHOWN FOR REFERENCE

P.3500

GRADING, SEEDING & RESTORATION NOTES

- 1. ALL GRADES SHOWN ARE FINAL FINISHED SURFACE GRADES.
- 2. AREAS TO BE SEEDED SHALL HAVE A MINIMUM 6 INCHES TOPSOIL UNLESS OTHERWISE NOTED.
- 3. AREAS NOT RESTORED WITH EROSION MATTING OR OTHER STABILIZATION MEASURES SHALL BE STABILIZED WITH MULCH.

ANEWIEW AVENUE

BM-1

ХX

 λ

- 4. APPLY ANIONIC POLYMER TO DISTURBED AREAS IF EROSION BECOMES PROBLEMATIC.
- 5. MULCH SHALL BE WEED-FREE STRAW AND SHALL BE INSTALLED AT THE RATE OF 2 TONS PER ACRE PER SECTION 627 OF "STANDARD SPECIFICATIONS FOR HIGHWAY AND STRUCTURE CONSTRUCTION" (WISDOT 2014)
- 6. PERMANENT SEEDING SHALL NOT OCCUR BETWEEN SEPTEMBER 15TH AND APRIL 15TH. ALTERNATE SEEDING/PLANTING METHODS AND/OR EROSION PROTECTION MAY BE NECESSARY FOR SEEDING/PLANTING THAT OCCURS DURING THAT TIME. COORDINATE WITH THE OWNER AS NECESSARY.
- TEMPORARY STABILIZATION SHALL CONSIST OF ONE OR MORE OF THE FOLLOWING OPTIONS:
 a. TEMPORARY SEEDING CONSISTING OF ANNUAL RYE GRASS APPLIED AT A RATE OF 1.5 LBS PER 1000 SQUARE FEET,
 b. WISDOT PAL CLASS I TYPE B URBAN EROSION CONTROL MAT.

		· · · · · · · · · · · · · · · · · · ·	PROPERTY BOUNDARY EASEMENT				
	_		BUILDING FOOTPRINT 18" CURB AND GUTTER				
		· · · · · · · · · · · · · · · · · · ·	ASPHALT PAVEMENT CONCRETE PAVEMENT				
		1180 1181	PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR			/YSE	
		STM]	PROPOSED STORM SEWER SILT FENCE		EN	GINEERIN	NG
			INLET PROTECTION DITCH CHECK				
		<u>1181.25 EP</u>	SPOT GRADE DRAINAGE GRADE BREAK				
		1.0%	DRAINAGE ARROW				
	G	ENERAL NOTES					
	1.	UNDERLYING SITE CONTO ENGINEERING ON THE WEE ANY ERRORS OR OMISSION OTHERS. CONTRACTOR TO	URS AND INFORMATION BASED ON TOPOGRAPHI EKS OF APRIL 6 AND MAY 31, 2023. WYSER ENGIN NS THAT MAY ARISE AS A RESULT OF ERRONEOU) CONFIRM ALL ELEVATIONS, GENERAL DRAINAG	C & UTILITY DATA AS SURVEYED BY WYSER NEERING SHALL NOT BE HELD RESPONSIBLE FOR S OR INCOMPLETE INFORMATION PROVIDED BY E AND EARTHWORK REQUIREMENTS PRIOR TO			
	2.	THE BENCHMARK LOCATIO BASED ON PUBLISHED ELE CONTRACTOR SHALL CHEO TRANSFER ONTO THE SITE	ONS ARE SHOWN FOR REFERENCE ONLY ON THIS EVATIONS FOR CITY OF MIDDLETON HYDRANT H CK INTO THE BENCHMARKS SHOWN. CONTRACT E.	PLAN. THE ELEVATIONS FOR THE SURVEY ARE 12090. PRIOR TO SETTING SITE ELEVATIONS, THE OR ASSUMES RISK ASSOCIATED WITH BENCHMARK			
	3.	CONTRACTOR TO OBTAIN	APPROPRIATE PERMITS FOR STREET OPENINGS	& TO WORK WITHIN THE CITY and County RO	W.		
	4.	WYSER ENGINEERING SHA CONTRACTOR FROM THE A AGENCIES.	LL BE HELD HARMLESS AND DOES NOT WARRAN APPROVED CONSTRUCTION PLANS THAT MAY RE	IT ANY DEVIATIONS BY THE OWNER OR SULT IN DISCIPLINARY ACTIONS BY REGULATORY			NUE
	5.	IF ANY ERRORS, DISCREPA ATTENTION OF THE ENGIN	NCIES, OR OMISSIONS WITHIN THE PLAN BECOM	E APPARENT, IT SHALL BE BROUGHT TO THE CATION OR REDESIGN MAY OCCUR.			AVE1 5562
	6.	ALL MUNICIPAL UTILITY C WITH CITY OF MIDDLETON	ONNECTIONS, WORK IN ROW PUBLIC OUTLOTS	AND PUBLIC EASEMENTS SHALL BE IN ACCORDANCE			
	C		SITE EROSION CONTROL RE	QUIREMENTS			N, K
	1.	POST WDNR CERTIFICATE OF CONSTRUCTION ACTIVITIES I	⁻ PERMIT COVERAGE AND MUNICIPAL EROSION CONT HAVE CEASED, THE SITE IS STABILIZED, AND A NOTIC	ROL PERMITS ON SITE AND MAINTAIN UNTIL E OF TERMINATION IS FILED WITH WDNR.			LETO
	2. 3.	KEEP A COPY OF THE CURRE ENGINEER / CITY OF MIDD TO IMPLEMENT ADDITION. MIDDLETON BUILDING INS	NT EROSION CONTROL PLAN ON SITE THROUGHOUT PLETON / DANE COUNTY LAND CONSERVATION / AL EROSION CONTROL MEASURES AS NECESSAR SPECTOR TWO (2) WORKING DAYS IN ADVANCE C	THE DURATION OF THE PROJECT. WDNR HAS THE RIGHT TO REQUIRE CONTRACTOR Y.CONTRACTOR MUST NOTIFY THE CITY OF F ANY SOIL DISTURBANCE ACTIVITIES.			6418 MIDD
	4.	SUBMIT PLAN REVISIONS OR	AMENDMENTS TO THE WDNR AT LEAST 5 DAYS PRIC	DR TO FIELD IMPLEMENTATION.			
	5.	THE SITE CONTRACTOR IS RE A RAINFALL EVENT OF 0.5 IN	ESPONSIBLE FOR ROUTINE SITE INSPECTIONS AT LEA CHES OR GREATER. KEEP INSPECTION REPORTS ON-S	ST ONCE EVERY 7 DAYS AND WITHIN 24 HOURS AFTER SITE AND MAKE THEM AVAILABLE UPON REQUEST.			
	7.	STABILIZED. WHEN POSSIBLE: PRESERVE	EXISTING VEGETATION (ESPECIALLY ADJACENT TO S	URFACE WATERS). MINIMIZE LAND-DISTURBING			
STM	8.	CONSTRUCTION ACTIVITY ON REFER TO THE WDNR STORM http://dnr.wi.gov/topic/stormy	V SLOPES OF 20% OR MORE, MINIMIZE SOIL COMPACT IWATER CONSTRUCTION TECHNICAL STANDARDS AT water/standards/const_standards.html.	TION, AND PRESERVE TOPSOIL.		N	
	9.	INSTALL PERIMETER EROSIO ACTIVITIES, INCLUDING CLEA FOR ROCK CONSTRUCTION E	N CONTROLS AND ROCK TRACKING PAD CONSTRUCT ARING AND GRUBBING. USE WDNR TECHNICAL STANE INTRANCE(S).	ION ENTRANCE(S) PRIOR TO ANY LAND-DISTURBING DARD STONE TRACKING PAD AND TIRE WASHING #1057		Υ, \	
	10.	INSTALL INLET PROTECTION UPON INLET INSTALLATION. #1060 AND DANE COUNTY RE	PRIOR TO LAND-DISTURBING ACTIVITIES IN THE CON COMPLY WITH WDNR TECHNICAL STANDARD STORM EQUIREMENTS FOR FRAMED INLET PROTECTION.	ITRIBUTING DRAINAGE AREA AND/OR IMMEDIATELY DRAIN INLET PROTECTION FOR CONSTRUCTION SITES		NT	
	11.	CONTRACTOR TO PROVIDE S FROM ENTERING THE STORM	OLID LID OR METAL PLATE ON ALL OPEN MANHOLES // SEWER SYSTEM.	DURING CONSTRUCTION TO MINIMIZE SEDIMENT			
	12.	STAGE CONSTRUCTION GRAI	DING ACTIVITIES TO MINIMIZE THE CUMULATIVE EXP NR TECHNICAL STANDARD TEMPORARY GRADING PR/	OSED AREA. CONDUCT TEMPORARY GRADING FOR ACTICES FOR EROSION CONTROL #1067.	ΛE	C	
	13.	PERMITTING OF GROUNDWA TO A DNR WASTEWATER DIS OR MORE.	TER DEWATERING IS THE RESPONSIBILITY OF THE CO CHARGE PERMIT AND A DNR HIGH CAPACITY WELL A	DNTRACTOR. GROUNDWATER DEWATERING IS SUBJECT PPROVAL IF CUMULATIVE PUMP CAPACITY IS 70 GPM	NAC	NE	
	14.	ACCUMULATED SURFACE RU	SECTION AND MAINTAIN NON-EROSIVE FLOW DURING JNOFF IN ACCORDANCE WITH WONR TECHNICAL STAT	DEWATERING. PERFORM DEWATERING OF NDARD DE-WATERING #1061. URBANCE TO CONTROL RUNOEE DURING		D/	
	10.	CONSTRUCTION. REMOVE SE SEDIMENT REMOVED DURIN TECHNICAL STANDARD SEDI	DIMENT AS NEEDED TO MAINTAIN 3 FEET OF DEPTH G MAINTENANCE (REFER TO NR 528). CONSTRUCT AN MENT BASIN #1064 AND SEDIMENT TRAP # 1063.	TO THE OUTLET, AND PROPERLY DISPOSE OF ID MAINTAIN THE SEDIMENT BASIN PER WDNR		, N	PLAN
	16.	CONSTRUCT AND PROTECT REFERENCE THE WDNR TECH	THE BIOINFILTRATION BASIN AND VEGETATION FROM HNICAL STANDARD BIORETENTION FOR INFILTRATION	I RUNOFF AND SEDIMENT DURING CONSTRUCTION. N # 1004.		10 T	OLF
	17.	INSTALL AND MAINTAIN SILT FENCES AND SEDIMENT BAR BARRIER HEIGHT	FENCING PER WDNR TECHNICAL STANDARD SILT FE RIERS BEFORE SEDIMENT REACHES A DEPTH THAT IS	ENCE #1056. REMOVE SEDIMENT FROM BEHIND SILT S EQUAL TO ONE-HALF OF THE FENCE AND/OR			ONTR
	18.	REPAIR BREAKS AND GAPS IN IS 3 MONTHS). LOCATE, INST	N SILT FENCES AND BARRIERS IMMEDIATELY. REPLAC ALL, AND MAINTAIN STRAW BALES PER WDNR TECH	CE DECOMPOSING STRAW BALES (TYPICAL BALE LIFE NICAL STANDARD DITCH CHECKS #1062.	U X U		0 Z
	19.	INSTALL AND MAINTAIN FILT CONTROL AND SLOPE INTER	ER SOCKS IN ACCORDANCE WITH WDNR TECHNICAL RUPTION PRODUCTS # 1071.	STANDARD INTERIM MANUFACTURED PERIMETER	02	M	OISIO
	20.	IMMEDIATELY STABILIZE STO STOCKPILES WILL REMAIN IN	CKPILES AND SURROUND STOCKPILES AS NEEDED N NACTIVE FOR 7 DAYS OR LONGER.	WITH SILT FENCE OR OTHER PERIMETER CONTROL IF	<u> </u>	Ц	ER(
	21.	IMMEDIATELY STABILIZE ALL OCTOBER 15: STABILIZE WITI RYE, AS APPROPRIATE FOR R DORMANT SEED MIX, AS APP	- DISTURBED AREAS THAT WILL REMAIN INACTIVE FC H MULCH, TACKIFIER, AND A PERENNIAL SEED MIXED (EGION AND SOIL TYPE OCTOBER 15 THROUGH COLD PROPRIATE FOR REGION AND SOIL TYPE.	R 14 DAYS OR LONGER. BETWEEN SEPTEMBER 15 AND WITH WINTER WHEAT, ANNUAL OATS, OR ANNUAL WEATHER: STABILIZE WITH A POLYMER AND	ASTL	TΥC	DING &
	22. 23.	STABILIZE AREAS OF FINAL O SWEEP/CLEAN UP ALL SEDIM END OF THE SAME WORKDAY	MENT/TRASH THAT MOVES OF REACHING FINAL GRADE. VENT/TRASH THAT MOVES OFF-SITE DUE TO CONST Y OR AS DIRECTED BY THE AUTHORITIES WITH JURIS	RUCTION ACTIVITY OR STORM EVENTS BEFORE THE DICTION. SEPARATE SWEPT MATERIALS (SOILS AND	Ú	C	Shee GRA
/	24.	TRASH) AND DISPOSE OF AP	PROPRIATELY. NSIBLE FOR CONTROLLING DUST PER WDNR TECHNI	CAL STANDARD DUST CONTROL ON CONSTRUCTION	Revisions: No. Date	Description:	
/	25.	PROPERLY DISPOSE OF ALL V	WASTE AND UNUSED BUILDING MATERIALS (INCLUD	ING GARBAGE, DEBRIS, CLEANING WASTES, OR OTHER			
	26.	COORDINATE WITH THE AUT OR LIKELY DISPOSAL LOCAT DISPOSAL. THE DEPOSITED (FENCE HAY BALES FILTER S	HORITIES WITH JURISDICTION TO UPDATE THE LAND IONS FOR ANY EXCAVATED SOILS OR CONSTRUCTION OR STOCKPILED MATERIAL NEEDS TO INCLUDE PERIN SOCKS, OR COMPACTED FARTHEN BERMS)	DISTURBANCE PERMIT TO INDICATE THE ANTICIPATED I DEBRIS THAT WILL BE HAULED OFF-SITE FOR METER SEDIMENT CONTROL MEASURES (SUCH AS SILT			
	27.	FOR NON-CHANNELIZED FLC	JW ON DISTURBED OR CONSTRUCTED SLOPES, PROV NTAIN PER WDNR TECHNICAL STANDARD NON-CHAN	IDE CLASS CLASS I TYPE B EROSION CONTROL NEL EROSION MAT #1052.			
	28.	FOR CHANNELIZED FLOW ON OTHERWISE SPECIFIED ON T	I DISTURBED OR CONSTRUCTED AREAS, PROVIDE CL/ THE PLAN. INSTALL AND MAINTAIN PER WDNR TECHN	ASS II TYPE B EROSION CONTROL MATTING UNLESS ICAL STANDARD CHANNEL EROSION MAT #1053.			
× _	29.	MAKE PROVISIONS FOR WAT MORE THAN 7 CONSECUTIVE	ERING DURING THE FIRST 8 WEEKS FOLLOWING SEED DAYS OF DRY WEATHER OCCUR.	DING OR PLANTING OF DISTURBED AREAS WHENEVER			
	30.	THE CONTRACTOR IS RESPO REQUIREMENTS FOR HANDL KNOWN OR SUSPECTED SOIL	NSIBLE FOR COMPLYING WITH ALL APPLICABLE WON ING AND DISPOSING OF CONTAMINATED MATERIALS. _ AND/OR GROUNDWATER CONTAMINATION CAN BE	IR REMEDIATION AND WASTE MANAGEMENT SITE-SPECIFIC INFORMATION FOR AREAS WITH FOUND ON WDNR'S BUREAU OF REMEDIATION AND			
	31.	INSTALL AND MAINTAIN A CO	DNCRETE WASHOUT BASIN PER EPA 833-F-11-006: http://dnr.wi.	gov/botw/ ps://www3.epa.gov/npdes/pubs/concretewashout.pdf. CRETE MIXING, EVAPORATED. OR DISPOSED OF AS	Graphic Scale	0'5'10'	20' 30'
		WASTEWATER.			Wyser Number	23-1026	
BENCHM	IARK	TABLE			Set	GDP	
JENGIN		DESCRIPTION		ICCEDE 🛛 UNTINE	Date		
TAG BOLT	HYDRA	NT H12090 – FAST QUADRAN	IT OF UNIVERSITY AVE AND LAKEVIEW AVE		Issued	иб/19/20	123

925.34TAG BOLT HYDRANT H12090 - EAST QUADRANT OF UNIVERSITY AVE AND LAKEVIEW AVE919.12TAG BOLT HYDRANT H12094 - SOUTH SIDE OF UNIVERSITY AVE

LEGEND (PROPOSED)

C200

Sheet

Number

LEGEND (PROPOSED)

	Ρ
· · ·	Ε
	В
	1
	Α
	С
1180	Ρ
	Ρ
STM	Ρ
1181.25 EP	S
	D
1.0%	C

PROPERTY BOUNDARY EASEMENT BUILDING FOOTPRINT 18" CURB AND GUTTER ASPHALT PAVEMENT CONCRETE PAVEMENT PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR PROPOSED STORM SEWER SPOT GRADE DRAINAGE GRADE BREAK DRAINAGE ARROW

WYSER ENGINEERING

Г С

 ∞ \overline{c}

----- \geq

- \succ \vdash

NNO

 \bigcirc ш

DAN

-

ZO

Н Ш

MIDDLI

LL

Ο

 \succ

CIT

Z

PME

 \bigcirc

>

RED

ROCK

Ш

S

 \triangleleft

 \bigcirc

Graphic Scale

Wyser

Set

Туре

Date

lssued

Sheet Number

Number

23-1026

06/19/2023

C201

GDP

0'5'10' 20' 30

Revisions:

No. Date: Description:

GENERAL NOTES

- 1. UNDERLYING SITE CONTOURS AND INFORMATION BASED ON TOPOGRAPHIC & UTILITY DATA AS SURVEYED BY WYSER ENGINEERING ON THE WEEKS OF APRIL 6 AND MAY 31, 2023. WYSER ENGINEERING SHALL NOT BE HELD RESPONSIBLE FOR ANY ERRORS OR OMISSIONS THAT MAY ARISE AS A RESULT OF ERRONEOUS OR INCOMPLETE INFORMATION PROVIDED BY OTHERS. CONTRACTOR TO CONFIRM ALL ELEVATIONS, GENERAL DRAINAGE AND EARTHWORK REQUIREMENTS PRIOR TO CONSTRUCTION.
- 2. THE BENCHMARK LOCATIONS ARE SHOWN FOR REFERENCE ONLY ON THIS PLAN. THE ELEVATIONS FOR THE SURVEY ARE BASED ON PUBLISHED ELEVATIONS FOR CITY OF MIDDLETON HYDRANT H12090. PRIOR TO SETTING SITE ELEVATIONS, THE CONTRACTOR SHALL CHECK INTO THE BENCHMARKS SHOWN. CONTRACTOR ASSUMES RISK ASSOCIATED WITH BENCHMARK TRANSFER ONTO THE SITE.
- 3. CONTRACTOR TO OBTAIN APPROPRIATE PERMITS FOR STREET OPENINGS & TO WORK WITHIN THE CITY See previous. 4. WYSER ENGINEERING SHALL BE HELD HARMLESS AND DOES NOT WARRANT ANY DEVIATIONS BY THE OWNER OR CONTRACTOR FROM THE APPROVED CONSTRUCTION PLANS THAT MAY RESULT IN DISCIPLINARY ACTIONS BY REGULATORY
- AGENCIES.
- 5. IF ANY ERRORS, DISCREPANCIES, OR OMISSIONS WITHIN THE PLAN BECOME APPARENT, IT SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO CONSTRUCTION SO THAT CLARIFICATION OR REDESIGN MAY OCCUR.
- 6. ALL MUNICIPAL UTILITY CONNECTIONS, WORK IN ROW, See prev. AND PUBLIC EASEMENTS SHALL BE IN ACCORDANCE WITH CITY OF MIDDLETON STANDARD SPECIFICATIONS.

BENCHMARK TABLE

DESCRIPTION

925.34 TAG BOLT HYDRANT H12090 - EAST QUADRANT OF UNIVERSITY AVE AND LAKEVIEW AVE 919.12 TAG BOLT HYDRANT H12094 - SOUTH SIDE OF UNIVERSITY AVE

Toll Free (800) 242–8511 –or– 811 Hearing Impaired TDD (800) 542-2289 www.DiggersHotline.com

LEGEND (PROPOSED)

	PROPOSED PROPERTY BOUNDARY
· · ·	EASEMENT
	BUILDING FOOTPRINT
	18" CURB AND GUTTER
	ASPHALT PAVEMENT
	CONCRETE PAVEMENT
——— WAT ———	PROPOSED WATER MAIN
SAN	PROPOSED SANITARY SEWER
STM	PROPOSED STORM SEWER
GAS	PROPOSED GAS SERVICE (DESIGN BY
——— E ———	PROPOSED ELECTRIC SERVICE (DESIG
· · · ·	STORMWATER TREATMENT FACILITY
	DRAINAGE GRADE BREAK
1.0%	DRAINAGE ARROW

PROPOSED PROPERTY BOUNDARY EASEMENT **BUILDING FOOTPRINT** 18" CURB AND GUTTER ASPHALT PAVEMENT CONCRETE PAVEMENT PROPOSED WATER MAIN PROPOSED SANITARY SEWER PROPOSED STORM SEWER PROPOSED GAS SERVICE (DESIGN BY OTHERS) PROPOSED ELECTRIC SERVICE (DESIGN BY OTHERS)

 $\lambda / V \leq P$

GENERAL NOTES

1.0%

- 1. UNDERLYING SITE CONTOURS AND INFORMATION BASED ON TOPOGRAPHIC & UTILITY DATA AS SURVEYED BY WYSER ENGINEERING ON THE WEEKS OF APRIL 6 AND MAY 31, 2023. WYSER ENGINEERING SHALL NOT BE HELD RESPONSIBLE FOR ANY ERRORS OR OMISSIONS THAT MAY ARISE AS A RESULT OF ERRONEOUS OR INCOMPLETE INFORMATION PROVIDED BY OTHERS. CONTRACTOR TO CONFIRM ALL ELEVATIONS, GENERAL DRAINAGE AND EARTHWORK REQUIREMENTS PRIOR TO CONSTRUCTION.
- 2. THE BENCHMARK LOCATIONS ARE SHOWN FOR REFERENCE ONLY ON THIS PLAN. THE ELEVATIONS FOR THE SURVEY ARE BASED ON PUBLISHED ELEVATIONS FOR CITY OF MIDDLETON HYDRANT H12090. PRIOR TO SETTING SITE ELEVATIONS, THE CONTRACTOR SHALL CHECK INTO THE BENCHMARKS SHOWN. CONTRACTOR ASSUMES RISK ASSOCIATED WITH BENCHMARK TRANSFER ONTO THE SITE.
- 3. CONTRACTOR TO OBTAIN APPROPRIATE PERMITS FOR STREET OPENINGS & TO WORK WITHIN THE CITY'S LAND IF REQUIRED.
- 4. WYSER ENGINEERING SHALL BE HELD HARMLESS AND DOES NOT WARRANT ANY DEVIATIONS BY THE OWNER OR CONTRACTOR FROM THE APPROVED CONSTRUCTION PLANS THAT MAY RESULT IN DISCIPLINARY ACTIONS BY REGULATORY AGENCIES.
- 5. IF ANY ERRORS, DISCREPANCIES, OR OMISSIONS WITHIN THE PLAN BECOME APPARENT, IT SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO CONSTRUCTION SO THAT CLARIFICATION OR REDESIGN MAY OCCUR.
- 6. ALL MUNICIPAL UTILITY CONNECTIONS, WORK IN ROW, PUBLIC OUTLOTS AND PUBLIC EASEMENTS SHALL BE IN ACCORDANCE WITH CITY OF MIDDLETON STANDARD SPECIFICATIONS.

UTILITY NOTES

- DIMENSIONS TAKE PRECEDENCE OVER SCALE. CONTRACTOR TO VERIFY ALL DIMENSIONS IN FIELD. LENGTHS OF ALL UTILITIES ARE TO CENTER OF STRUCTURES OR FITTINGS AND MAY VARY SLIGHTLY FROM PLAN.
- LENGTHS SHALL BE VERIFIED IN THE FIELD DURING CONSTRUCTION.
- CONTRACTOR SHALL VERIFY ALL ELEVATIONS, LOCATIONS, AND SIZES OF SANITARY, WATER AND STORM LATERALS AND CHECK ALL UTILITY CROSSINGS FOR CONFLICTS.
- 4. THE PROPOSED IMPROVEMENTS MUST BE CONSTRUCTED IN ACCORDANCE WITH ENGINEERING PLANS DESIGNED TO MEET ORDINANCES AND REQUIREMENTS OF THE MUNICIPALITY AND WISDOT, WISDSPS, AND WDNR.
- 5. PRIOR TO CONSTRUCTION, THE CONTRACTOR IS RESPONSIBLE FOR: • EXAMINING ALL SITES CONDITIONS RELATIVE TO THE CONDITIONS INDICATED ON THE ENGINEERING DRAWINGS. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ENGINEER AND RESOLVED PRIOR TO THE START OF
- CONSTRUCTION. • OBTAINING ALL PERMITS INCLUDING PERMIT COSTS, TAP FEES, METER DEPOSITS, BONDS, AND ALL OTHER FEES
- REQUIRED FOR PROPOSED WORK TO OBTAIN OCCUPANCY.
 VERIFYING UTILITY ELEVATIONS AND NOTIFYING ENGINEER OF ANY DISCREPANCY. NO WORK SHALL BE PERFORMED UNTIL THE DISCREPANCY IS RESOLVED.
- NOTIFYING ALL UTILITIES PRIOR TO THE INSTALLATION OF ANY UNDERGROUND IMPROVEMENTS. • NOTIFYING THE DESIGN ENGINEER AND MUNICIPALITY 48 HOURS PRIOR TO THE START OF CONSTRUCTION TO ARRANGE FOR APPROPRIATE CONSTRUCTION OBSERVATION.
- 9. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING THE ENGINEER WITH AS-BUILT CONDITIONS OF THE DESIGNATED IMPROVEMENTS IN ORDER THAT THE APPROPRIATE DRAWINGS CAN BE PREPARED, IF REQUIRED. ANY CHANGES TO THE DRAWINGS OR ADDITIONAL ITEMS MUST BE REPORTED TO THE ENGINEER AS WORK PROGRESSES.
- 10. ANY SANITARY SEWER, SANITARY SEWER SERVICES, WATER MAIN, WATER SERVICES, STORM SEWER, OR OTHER UTILITIES, WHICH ARE DAMAGED BY THE CONTRACTORS, SHALL BE REPAIRED TO THE OWNER'S SATISFACTION AT THE CONTRACTOR'S EXPENSE. NO BLASTING IS ALLOWED WITHIN 30 FEET OF EXISTING UTILITIES.
- 11. ALL PRIVATE INTERCEPTOR WATER MAIN AND WATER SERVICES SHALL BE INSTALLED WITH A 6' MINIMUM BURY. PROVIDE INSULATION ABOVE PIPES WITH LESS THAN 5' OF GROUND COVER.
- 12. GRANULAR BACKFILL MATERIALS ARE REQUIRED IN ALL UTILITY TRENCHES UNDER SIDEWALKS AND PROPOSED PAVED AREAS (UNLESS OTHERWISE SPECIFIED BY A GEOTECHNICAL ENGINEER). ALL UTILITY TRENCH BACKFILL SHALL BE COMPACTED PER SPECIFICATIONS. ALL PAVEMENT PATCHING SHALL COMPLY WITH THE CITY OF MIDDLETON STANDARD SPECIFICATIONS. ADDITIONAL PAVEMENT MILLING AND OVERLAY MAY BE REQUIRED BY PERMIT.
- 13. CONTRACTOR SHALL NOTIFY THE MUNICIPAL PUBLIC WORKS DEPARTMENT A MINIMUM OF 48 HOURS BEFORE CONNECTING TO PUBLIC UTILITIES.
- 14. ALL NON-METALLIC BUILDING SEWER AND WATER SERVICES MUST BE ACCOMPANIED BY MEANS OF LOCATING UNDERGROUND PIPE. TRACER WIRE VALVE BOXES SHALL BE INSTALLED ON ALL LATERALS AND AS INDICATED ON THESE PLANS.
- 15. ALL, EXTERIOR CLEANOUTS SHALL BE PROVIDED WITH A FROST SLEEVE IN ACCORDANCE WITH SPS 382.34(5)(a) b AND SPS 384.30(2)(c).
- 16. ALL PRIVATE PLUMBING MATERIALS SHALL CONFORM TO SPS 384.30.
- 17. ALL PRIVATE PIPE JOINTS SHALL BE INSTALLED PER SPS 384.40.
- 18. ALL PRIVATE WATER PIPE, INCLUDING DEPTH AND SERRATION REQUIREMENTS, SHALL BE IN ACCORDANCE WITH SPS 382.40(8).
- 19. THE CONTRACTOR SHALL ALLOW 10 WORKING DAYS FOR THE CONSTRUCTION OF GAS MAINS WHEN SCHEDULING THE WORK AND SHALL NOT RESTRICT ACCESS TO THE GAS MAIN CONTRACTOR OR OTHER UTILITY COMPANIES.
- 20. INLET CASTINGS SHALL BE SET TO GRADE PRIOR TO AND SEPARATE FROM THE POURING OF THE CONCRETE CURB AND GUTTER. IS IS REQUIRED THAT THREE FEET OF CONCRETE CURB AND GUTTER ON EACH SIDE OF THE INLET SHALL BE POURED BY HAND, NOT THROUGH THE USE OF A CURB MACHINE. THE INLET CASTING SHALL BE SET TO GRADE ON A BED OF MORTAR WHICH SHALL BE A MINIMUM OF TWO INCHES THICK. THE INLET SHALL BE PLACED ON THE MORTAR BED AND SHALL BE ADJUSTED TO GRADE BY APPLYING DIRECT PRESSURE TO THE CASTING. ONCE THE CASTING ADJUSTMENT IS COMPLETE, THREE FEET OF CURB AND GUTTER ON EACH SIDE OF THE CASTING SHALL BE POURED BY HAND
- 21. CONTRACTOR SHALL VERIFY AND COORDINATE ALL UTILITY CONNECTIONS WITH THE BUILDING PRIOR TO CONSTRUCTION.
- 22. THE CONTRACTOR SHALL CONDUCT HIS OPERATIONS SO AS TO BE IN CONFORMANCE WITH THE CITY EROSION CONTROL AND STORMWATER ORDINANCE, AND DNR ADMINISTRATIVE RULE NR 216 AT ALL TIMES.

Hearing Impaired TDD (800) 542-2289 www.DiggersHotline.com

eng i	NEERI	- IN NG
		6418 UNIVERSITY AVENUE MIDDLETON, WI 53562
CASTLE ROCK REDEVELOPMENT	CITY OF MIDDLETON, DANE COUNTY, WI	Sheet Title: UTILITY PLAN
Revisions: No. Date:	Description:	

Graphic Scale

Wyser

Set

Туре

Date

lssued

Sheet

Number

Number

0'5'10' 20' 30

23-1026

06/19/2023

C300

GDP

ile: W:\2023\231026_GBA – 6418 University Ave, Middleton\dwg\231026_Civil Design.dwg Layout: Details User: Dan Plotted: Jun 19, 2023 –

	Luminaire Schedule			
	Qty Label MFG De	escription	LLF Lum. Watts Total Watts	S
.00	2 OA5 LITHONIA DS	SX0 LED P1 30K 70CRI T5M MVOLT SPA (finish) + 16' POLE + 2' BASE	0.950 34 68	
	2 OABLC4 LITHONIA DS	SX0 LED P1 30K 70CRI BLC4 MVOLT SPA (finish) + 16' POLE + 2' BASE	0.950 34 68	G B
.00 ō.00 ō.00 ō.00 ō.00 ō.00 ō.00 ō.00	1 OALCCO LITHONIA DS	SX0 LED P1 30K 70CRI LCCO MVOLT SPA (finish) + 16' POLE + 2' BASE	0.950 34 34	0 . g
	4 OW1 LITHONIA WF	/PX0 LED ALO SWW2 MVOLT PE DDBXD (1200LM)	0.950 9.2 36.8	C 3
.oo ō.oo ō.oo ō.oo ō.oo ō.oo ō.oo ō.oo				54
8.007 O				20
.oo ō.oo ō.oo ō.oo ō.oo ō.oo ō.oo ō.oo				
				Ed.
.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
0.04	Calculation Summary			
.00 $\overline{0}.00$ $\overline{0}.00$ $\overline{0}.00$ $\overline{0}.00$ $\overline{0}.00$ $\overline{0}.01$ $\overline{0}.01$ $\overline{0}.02$ $\overline{0}.03$ $\overline{0}.06$ $\overline{0}.0304$ $\overline{0}.23$ $\overline{0}.36$ $\overline{0}.45$ $\overline{0}.51$ $\overline{0}.51$ $\overline{0}.44$ $\overline{0}.37$ $\overline{0}.26$ $\overline{0}.516$ $\overline{0}.08$ $\overline{0}.04$ $\overline{0}.02$ $\overline{0}.01$	Label Un	nits Avg Max Min Max/Min Avg/Min		
	Large Parking Area	c 0.75 4.3 0.2 21.50 3.75		
.00 b.00 b.00 b.00 b.00 b.01 b.01 b.02 b.04 b.08 b.14 b.23 b.35 b.48 b.62 b.69 b.68 b.62 b.50 b.40 b.30 ⁰⁹ b.19 b.09 b.04 b.02	Small Parking Area Fc	c 1.95 4.3 0.4 10.75 4.88		
.00 b.00 b.00 b.01 b.01 b.02 b.03 b.06 b.32 b.21 b.32 b.42 b.57 b.74 b.81 b.81 b.75 b.64 b.56 b.47 b.33 b.18 b.08 b.03				
.00 0.00 0.00 0.01 0.01 0.02 0.03 0.07 0.13 0.23 0.33 0.44 0.59 0.76 0.75 0.80 0.82 0.74 0.68 0.61 0.46 0.27 0.13 0.05 0.02 0.	.01 0.01 0.00 0.00 0.00 0.00 0.00	o ō.oo ō.oo ō.oo		
00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.05 0.10 0.18 0.29 0.40 0.55 0.72 0.83 18 18 18 0.82 0.76 0.67 0.54 0.36 0.29 0.10 0.04 0.55	.02 0.01 0.01 0.00 0.00 0.00 0.00	o ō.oo ō.oo ō.oo		
00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.05 0.10 0.50 0.33 0.48 0.62 0.73 0.83 0.87 0.85 0.81 0.71 0.58 0.45 0.45 0.30 0.17 0.08 0.17 0.08 0.17	0.04 0.02 0.01 0.01 0.00 0.00 0.00	0 0.00 0.00 0.00 0.00		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.05 0.12 0.24 0.39 0.53 0.66 0.77 0.83 0.87 0.86 0.78 0.69 0.54 0.39 0.26 0.15 0.15 0.16	.08 0.04 0.02 0.01 0.01 0.00 0 ⁺ 000 + 0.00			
	$\begin{array}{c} 13 \\ 0.07 \\ 0.05 \end{array}$	0,000 0.00 0.00 0.00		
+ + + + + + + + + + + + + + + + + + +				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 0 0 0 0 0.00 0.00 0.00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.12 0.06 0.03 0.02 0.01 0.01 0.00			
$.04 \ 0.08 \ 0.14 \ 0.23_{6} \ 0.63 \ 0.94 \ 1.24 \ 1.52 \ 1.28 \ 1.02 \ 0.85 \ 0.83 \ 1.02 \ 1.32 \ 1.66 \ 1.51 \ 1.27 \ 4.10 \ 0.86 \ 0.81 \ 0.85 \ 1.15 \ 1.40$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		$\pi 00^{+}$ on $\frac{1}{2}$ on $\frac{1}{2}$ on		
105 0.15 0.20 0.41 0.47 0.50 0.54 0.00 0.71 0.75 0.55 0.57 0.55 0.57 0.55 0.54 0.01 1.04 1.041 1.041 1.041 1.041		± · · · · · · · · · · · · · · · · · · ·		REVISIONS
05 0.08 0.13 0 19 0.25 0.29 0.33 0.37 0.51 1.08 1.69 0.86 0.48 0.39 0.35 0.33 0.35 0.38 0.40 0.42 0.43 0.35	to.04 to.04 to.02 to.02	100° ,00 $\frac{1}{0}$,00 $\frac{1}{0}$,00 $\frac{1}{0}$,00		
.04 0.06 0.09 0.12 0.14 0.17 0.23 0.26 0.41 1.81 5.95 1.01 0.37 0.29 0.26 0.24 0.23 0.24 0.27 0.31 0.31 0.24 0.15	to.27 to.18 to.05 00.00	2º [†] 0.01 [†] 0.00 [†] 0.00 [†] 0.00		
	3.34 0.99 0.110 0.03	₃ [†] 0.01 [†] 0.00 [†] 0.00		6 1 1 1
		$\begin{array}{c} \mathbf{CO} \\ 4 \\ 0.01 \\ \end{array}$		
	MH: 1	18		
.01 0.02 0.02 0.02 0.02 0.02 0.00	3.13 2.77 1.57 ⁰ 0.24	4 [†] 0.02 [†] 0.01 [†] 0.01 [†] 0.01		AT AT
	4.31 ² .37 0.990 82.03	3 0.02 0.01 0.01 0.01		
				Ω
00 0.01 0.01 0.00 0.00 0.00 0.00	2.53 1.32 0.380.00	3 0.01 0.01 0.01 0.01		
	MH:8			
	0.46 0.57 0.44 0.12.0° 0.01	1 0.01 0.01 0.01 0.00		
				AR I O II
	$00 0.00 0.11 0.14 0.12 0.03 00^{-1} 0.01$	1 0.01 0.00 0.00		A A A A A A A A A A A A A A A A A A
	.00 .0.2 .0.01 0.01 0.01 0.00			
00 0.00 $0.$	00 0.03 0.03 0.04 0.03 0.01 0.00	0 0.00 0.00 0.00		
. oo ō. oo	$02 \ \overline{0}.01 \ \overline{0}.01 \ \overline{0}.01 \ \overline{0}.01 \ \overline{0}.01 \ \overline{0}.00 \ \overline{0}.00 $	$0 \overline{0} \cdot 00 \overline{0} \cdot 00 \overline{0} \cdot 00 \overline{0} \cdot 00$		
		+ + + +		
.00 0.00 <u>0.00 0.00 0.00 0.00 0.00 0.00</u>	.01 0.00 0.00 0.00 0.00 0.00 0.00	0 0.00 0.00 0.00		
	.00 0.00 0.00 0.00 0.00 0.00	U U.UU U.UU U.UO U.OO		

D-Series Size 0 LED Area Luminaire

d"series

Specifications

Catalog Number

Notes

Туре

it the fublicey of mouse over the page to see an interact

Introduction

The modern styling of the D-Series features a highly refined aesthetic that blends seamlessly with its environment. The D-Series offers the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. D-Series outstanding photometry aids in reducing the number of poles required in area lighting applications, with typical energy savings of 70% and expected service life of over 100,000 hours.

Order	ing Informa	tion	EXA	MPLE: DSX0 LED P	6 40K 70CRI T3N	1 MVOLT SPA NLT	AIR2 PIRHN DDBXD
DSX0 LED							
Series	LEDs	Color temperature ²	Color Rendering Index ²	Distribution		Voltage	Mounting
DSX0 LED	Forward optics P1 P5 P2 P6 P3 P7 P4 Rotated optics P10 ¹ P12 ¹ P11 ¹ P13 ¹	(this section 70CRI only) 30K 3000K 40K 4000K 50K 5000K (this section 80CRI only, extended lead times apply) 27K 27K 2700K 30K 3000K 35K 3500K 40K 4000K 50K 5000K	70CRI 70CRI 70CRI 80CRI 80CRI 80CRI 80CRI 80CRI	AFRAutomotive front rowT1SType I shortT2MType II mediumT3MType III mediumT3LGType III low glare 3T4MType IV mediumT4LGType IV low glare 3TFTMForward throw medium	T5MType V mediumT5LGType V low glareT5WType V wideBLC3Type III backlight control 3BLC4Type IV backlight control 3LCC0Left corner cutoff 3RCC0Right corner cutoff 3	MVOLT (120V-277V) ⁴ HVOLT (347V-480V) ^{5,6} XVOLT (277V-480V) ^{7,8}	Shipped included SPA Square pole mounting (#8 drilling, 3.5" min. SQ pole) RPA Round pole mounting (#8 drilling, 3" min. RND pole) SPA5 Square pole mounting (#5 drilling, 3" min. SQ pole) ⁹ RPA5 Round pole mounting (#5 drilling, 3" min. RND pole) ⁹ RPA5 Round pole mounting (#5 drilling, 3" min. RND pole) ⁹ SPA8N Square narrow pole mounting (#8 drilling, 3" min. SQ pole) ⁹ WBA Wall bracket ¹⁰

Control options				Other	options	Finish (requ	ired)
Shipped install NLTAIR2 PIRHN PIR PER PER5	ed nLight AIR gen 2 enabled with bi-level motion / ambient sensor, 8-40' mounting height, ambient sensor enabled at 2fc. ^{11, 12, 18, 19} High/low, motion/ambient sensor, 8-40' mounting height, ambient sensor enabled at 2fc ^{13, 18, 19} NEMA twist-lock receptacle only (controls ordered separate) ¹⁴ Five-pin receptacle only (controls ordered separate) ^{14, 19}	PER7 FA0 BL30 BL50 DMG	Seven-pin receptacle only (controls ordered separate) ^{14,19} Field adjustable output ^{15,19} Bi-level switched dimming, 30% ^{16,19} Bi-level switched dimming, 50% ^{16,19} O-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷	Shipp HS L90 R90 CCE Shipp EGS BS	ed installed Houseside shield (black finish standard) ²⁰ Left rotated optics ¹ Right rotated optics ¹ Coastal Construction ²¹ ed separately External Glare Shield (reversible, field install required, matches housing finish) Bird Spikes (field install required)	DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark Bronze Black Natural Aluminum White Textured dark bronze Textured black Textured natural aluminum Textured white

Accessories

Ordered and shipped separately.					
DLL127F 1.5 JU	Photocell - SSL twist-lock (120-277V) 22				
DLL347F 1.5 CUL JU	Photocell - SSL twist-lock (347V) 22				
DLL480F 1.5 CUL JU	Photocell - SSL twist-lock (480V) 22				
DSHORT SBK	Shorting cap 22				
DSX0HS 20C	House-side shield for P1, P2, P3 and P4 ²⁰				
DSX0HS 30C	House-side shield for P10, P11, P12 and P13 $^{\scriptscriptstyle 20}$				
DSX0HS 40C	House-side shield for P5, P6 and P7 20				
DSXRPA (FINISH)	Round pole adapter (#8 drilling, specify finish)				
DSXRPA5 (FINISH)	Round pole adapter #5 drilling (specify finish)				
DSXSPA5 (FINISH)	Square pole adapter #5 drilling (specify finish)				
DSX0EGS (FINISH)	External glare shield				

NOTES

- NOTES
 Rotated optics available with packages P10, P11, P12 and P13. Must be combined with option L90 or R90.
 30K, 40K, and 50K available in 70CRI and 80CRI. 27K and 35K only available with 80CRI. Contact Technical Support for other possible combinations.
 T3LG, T4LG, BLC3, BLC4, LCCO, RCCO not available with option HS.
 MVCUT driver operates on any line voltage from 120-277V (50/60 Hz).
 HVOLT driver operates on any line voltage from 347-480V (50/60 Hz).
 HVOLT or available with package P1, P2 and P10 when combined with option NLTAIR2 PIRHN or option PIR.
 XVOLT operates with any voltage between 277V and 480V (50/60 Hz).
 XVOLT not available in packages P1, P2 or P10.
 SPAS and RPAS for use with #5 drilling only (Not for use with #8 drilling).
 WBA cannot be combined with type 5 distributions plus photocell (PER).
 NLTAIR2 and PIRHN must be ordered together. For more information on nLight Air 2.
 NLTAIR2 21RHN not available with the P1, P2 and P10 using XVOLT.
 PIR not available with NLTAIR2, PER, PER5, PER7, FAO BL30, BL50 and DMG. PIR not available with P1, P2 and P10 using XVOLT.
 PIR not available with NLTAIR2, PIR, BL30, BL50. Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting Cap included.
 FAO not available with ther dimming control options NLTAIR2 PIRHN, PIR, PER5, PER7, BL30, BL50, or DMG.
 BL30 and BL50 are not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, BL30, BL50 and DMG.
 FAO not available with ther dimming control options NLTAIR2 PIRHN, PIR, PER5, PER7, BL30, and DMG.
 BL30 and BL50 are not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, BL30, BL50, or DMG.
 BL30 and BL50 are not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, BL30, BL50 and DMG.
 DMG not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, FER3, BL50, and AGO.
 Reference Motion Sens
- - 16 17 18 19 20 21 22

 - DMG not available with NLIAIR2 PIKIN, PIK, PEK, PEK, BLSU BLSU and PAO. Reference Motion Sensor Default Settings table on page 4 to see functionality. Reference Controls Options table on page 4. Option HS not available with T3LG, T4LG, BLC3, BLC4, LCCO and RCCO distribution. Also available as a separate accessory; see Accessories information. CCE option not available with Option BS and EGS. Contact Technical Support for availability. Requires luminaire to be specified with PER, PERS or PER7 option. See Controls Table on page 4.

Shield Accessories

External Glare Shield (EGS)

Drilling

HANDHOLE ORIENTATION (from top of pole) (D

Α Handhole

House Side Shield (HS)

Tenon Mounting Slipfitter

	-	-					
Tenon O.D.	Mounting	Single Unit	2 @ 180	2 @ 90	3 @ 90	3 @120	4 @ 90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

				۳.,	₽ [₽] ₽	¥	■╂■
Mounting Option	Drilling Template	Single	2 @ 180	2 @ 90	3 @ 90	3 @ 120	4 @ 90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS
		Minimum Acceptable Outside Pole Dimension					
SPA	#8	3.5"	3.5"	3.5"	3.5"		3.5"
RPA	#8	3"	3"	3"	3"	3"	3"
SPA5	#5	3"	3"	3"	3"		3"
RPA5	#5	3"	3"	3"	3"	3"	3"
SPA8N	#8	3"	3"	3"	3"		3"

DSX0 Area Luminaire - EPA

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4 @ 90 DM49
Mounting Type	-	■■	┖╸	₽ ┸₽	¥	₽ <u></u>
DSX0 with SPA	0.44	0.88	0.96	1.18		1.16
DSX0 with SPA5, SPA8N	0.51	1.02	1.06	1.26		1.29
DSX0 with RPA, RPA5	0.51	1.02	1.06	1.26	1.24	1.29
DSX0 with MA	0.64	1.28	1.24	1.67	1.70	1.93

Isofootcandle plots for the DSX0 LED P7 40K 70CRI. Distances are in units of mounting height (20').

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 $^\circ$ C (32-104 $^\circ$ F).

Ambi	Lumen Multiplier	
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°C	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a **25°C** ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor		
0	1.00		
25,000	0.94		
50,000	0.89		
100,000	0.80		

FAO Dimming Settings

FAO Position	% Wattage	% Lumen Output
8	100%	100%
7	93%	95%
6	80%	85%
5	66%	73%
4	54%	61%
3	41%	49%
2	29%	36%
1	15%	20%

*Note: Calculated values are based on original performance package data. When calculating new values for given FAO position, use published values for each package based on input watts and lumens by optic type.

Motion Sensor Default Settings

Option	Unoccupied Dimmed Level	High Level (when occupied)	Phototcell Operation	Dwell Time	Ramp-up Time	Dimming Fade Rate
PIR	30%	100%	Enabled @ 2FC	7.5 min	3 sec	5 min
NLTAIR2 PIRHN	30%	100%	Enabled @ 2FC	7.5 min	3 sec	5 min

Controls Options

Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS (not available on DSX0)	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell receptacle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire. Cannot be used with other controls options that need the 0-10V leads.
PIR	Motion sensor with integral photocell. Sensor suitable for 8' to 40' mounting height.	Luminaires dim when no occupancy is detected.	Acuity Controls rSBG	Cannot be used with other controls options that need the 0-10V leads.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSBG	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app. Cannot be used with other controls options that need the 0-10V leads.
BL30 or BL50	Integrated bi-level device that allows a second control circuit to switch all light engines to either 30% or 50% light output	BLC device provides input to 0-10V dimming leads on all drivers providing either 100% or dimmed (30% or 50%) control by a secondary circuit	BLC UVOLT1	BLC device is powered off the 0-10V dimming leads, thus can be used with any input voltage from 120 to 480V

DSX0-LED
Rev. 11/10/22
Page 4 of 9

Electrical	Load				Current (A)								
	Performance Package	LED Count	Drive Current (mA)	Wattage	120V	208V	240V	277V	347V	480V			
	P1	20	530	34	0.28	0.16	0.14	0.12	0.10	0.07			
	P2	20	700	45	0.38	0.22	0.19	0.16	0.13	0.09			
	P3	20	1050	69	0.57	0.33	0.29	0.25	0.20	0.14			
Forward Optics (Non-Rotated)	P4	20	1400	94	0.78	0.45	0.39	0.34	0.27	0.19			
(P5	40	700	89	0.75	0.43	0.38	0.33	0.26	0.19			
	P6	40	1050	136	1.14	0.66	0.57	0.49	0.39	0.29			
	P7	40	1300	170	1.42	0.82	0.71	0.62	0.49	0.36			
	P10	30	530	51	0.42	0.24	0.21	0.18	0.15	0.11			
Rotated Optics	P11	30	700	67	0.57	0.33	0.28	0.25	0.20	0.14			
R90)	P12	30	1050	103	0.86	0.50	0.43	0.37	0.30	0.22			
	P13	30	1300	129	1.07	0.62	0.54	0.46	0.37	0.27			

LED Color Temperature / Color Rendering Multipliers

	70 CRI		8	DCRI	90CRI	
	Lumen Multiplier	Availability	Lumen Multiplier	Availability	Lumen Multiplier	Availability
5000K	102%	Standard	92%	Extended lead-time	71%	(see note)
4000K	100%	Standard	92%	Extended lead-time	67%	(see note)
3500K	100%	(see note)	90%	Extended lead-time	63%	(see note)
3000K	96%	Standard	87%	Extended lead-time	61%	(see note)
2700K	94%	(see note)	85%	Extended lead-time	57%	(see note)

Note: Some LED types are available as per special request. Contact Technical Support for more information.

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

Forward Optics																			
							30K					40K					50K		
LED Count	Drive	Performance Package	System Watts	Distribution Type		(30	00K, 70	CRI)			(40	00K, 70	CRI)			(50	00K, 70	CRI)	
	current (mA)	Tuckage			Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW
				T1S	4,906	1	0	1	148	5,113	1	0	1	154	5,213	1	0	1	157
				12M	4,545	1	0	2	137	4,736	1	0	2	143	4,829	1	0	2	145
				13M T316	4,59/	1	0	2 1	138	4,791	1	0	2	144	4,885	1	0	2 1	14/
				TAM	4,107	1	0	2	1/1	4,200	1	0	2	129	4,303	1	0	2	1/10
				T416	4,000	1	0	1	178	4 423	1	0	1	133	4,509	1	0	1	136
				TFTM	4,698	1	0	2	141	4.896	1	0	2	147	4.992	1	0	2	150
20	530	P1	33W	T5M	4,801	3	0	1	145	5,003	3	0	1	151	5,101	3	0	1	154
				T5W	4,878	3	0	1	147	5,084	3	0	2	153	5,183	3	0	2	156
				T5LG	4,814	2	0	1	145	5,018	2	0	1	151	5,115	2	0	1	154
				BLC3	3,344	0	0	1	101	3,485	0	0	1	105	3,553	0	0	1	107
				BLC4	3,454	0	0	2	104	3,599	0	0	2	108	3,670	0	0	2	111
					3,3/4	0	0	1	102	3,51/	0	0	1	106	3,585	0	0	1	108
				AER	3,374	1	0	1	102	5 113	1	0	1	100	5 213	1	0	1	100
				TIS	6.328	1	0	1	140	6.595	1	0	1	146	6,724	1	0	1	149
				T2M	5.862	1	0	2	130	6,109	1	0	2	135	6.228	1	0	2	138
				T3M	5,930	1	0	3	131	6,180	1	0	3	137	6,301	1	0	3	140
				T3LG	5,297	1	0	1	117	5,521	1	0	1	122	5,628	1	0	1	125
				T4M	6,018	1	0	3	133	6,272	1	0	3	139	6,395	1	0	3	142
				T4LG	5,474	1	0	1	121	5,705	1	0	1	126	5,816	1	0	1	129
				TFTM	6,060	1	0	3	134	6,316	1	0	3	140	6,439	1	0	3	143
20	700	P2	45W	T5M	6,192	3	0	1	137	6,453	3	0	2	143	6,579	3	0	2	146
				15W	6,293	3	0	2	139	6,558	3	0	2	145	6,686	3	0	2	148
				RIC3	0,210	2	0	2	06	0,472	0	0	2	145	0,390	0	0	2	140
				BIC4	4 455	0	0	2	99	4 643	0	0	2	100	4 733	0	0	2	102
				RCCO	4,352	0	0	2	96	4.536	0	0	2	100	4.624	0	0	2	102
				LCCO	4,352	0	0	2	96	4,536	0	0	2	100	4,624	0	0	2	102
				AFR	6,328	1	0	1	140	6,595	1	0	1	146	6,724	1	0	1	149
				T1S	9,006	1	0	2	131	9,386	1	0	2	136	9,569	1	0	2	139
				T2M	8,343	2	0	3	121	8,694	2	0	3	126	8,864	2	0	3	129
				T3M	8,439	2	0	3	122	8,795	2	0	3	128	8,967	2	0	3	130
				13LG	7,539	1	0	2	109	/,85/	1	0	2	114	8,010	1	0	2	116
				14M	8,202 7,700	2 1	0	3	124	8,920	2	0	3	129	9,100	1	0	3	132
				TFTM	8 674	1	0	2	125	8 988	1	0	3	130	9 163	2	0	2	120
20	1050	P3	69W	T5M	8.812	3	0	2	125	9,184	4	0	2	133	9,363	4	0	2	136
				T5W	8,955	4	0	2	130	9,333	4	0	2	135	9,515	4	0	2	138
				T5LG	8,838	3	0	1	128	9,211	3	0	1	134	9,390	3	0	1	136
				BLC3	6,139	0	0	2	89	6,398	0	0	2	93	6,522	0	0	2	95
				BLC4	6,340	0	0	3	92	6,607	0	0	3	96	6,736	0	0	3	98
				RCCO	6,194	1	0	2	90	6,455	1	0	2	94	6,581	1	0	2	95
					6,194	1	0	2	90	6,455	1	0	2	94	6,581	1	0	2	95
				T15	3,000	1	0	2	177	7,300	1	0	2	128	12 109	2	0	2	139
				T2M	10,557	2	0	3	113	11,003	2	0	3	118	11,217	2	0	3	121
				T3M	10,680	2	0	3	115	11,130	2	0	3	120	11,347	2	0	3	122
				T3LG	9,540	1	0	2	103	9,942	1	0	2	107	10,136	1	0	2	109
				T4M	10,839	2	0	3	117	11,296	2	0	3	121	11,516	2	0	4	124
				T4LG	9,858	1	0	2	106	10,274	1	0	2	110	10,474	1	0	2	113
				TFTM	10,914	2	0	3	117	11,374	2	0	3	122	11,596	2	0	3	125
20	1400	P4	93W	T5M	11,152	4	0	2	120	11,622	4	0	2	125	11,849	4	0	2	127
				15W	11,332	4	0	3	122	11,811	4	0	3	127	12,041	4	0	3	129
				RIC2	7 740	3	0	1	82	8 006	3	0	2	87	8 254	5	0	2	128
				BICA	8,023	0	0	2	86	8 362	0	0	2	90	8 524	0	0	2	97
				RCCO	7,838	1	0	2	84	8,169	1	0	2	88	8,328	1	0	2	90
				LCCO	7,838	1	0	2	84	8,169	1	0	2	88	8,328	1	0	2	90
				ΔFR	11 396	1	0	2	122	11 877	1	0	2	128	12 109	2	0	2	130

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

Forward Op	Forward Optics																		
							30K					40K					50K		
LED Count	Drive	Performance	System Watts	Distribution Type		(30	00K, 70	CRI)			(40	00K, 70	CRI)			(50	00K, 70	CRI)	
	Current (IIIA)	Раскауе			Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW
				T1S	12,380	2	0	2	137	12,902	2	0	2	143	13,154	2	0	2	146
				T2M	11,468	2	0	3	127	11,952	2	0	3	133	12,185	2	0	3	135
				T3M	11,601	2	0	3	129	12,091	2	0	3	134	12,326	2	0	4	137
				T3LG	10,363	2	0	2	115	10,800	2	0	2	120	11,011	2	0	2	122
				T4M	11,774	2	0	4	131	12,271	2	0	4	136	12,510	2	0	4	139
				T4LG	10,709	1	0	2	119	11,160	2	0	2	124	11,378	2	0	2	126
				TFTM	11,856	2	0	3	132	12,356	2	0	4	137	12,596	2	0	4	140
40	700	P5	90W	T5M	12,114	4	0	2	134	12,625	4	0	2	140	12,871	4	0	2	143
				T5W	12,310	4	0	3	137	12,830	4	0	3	142	13,080	4	0	3	145
				T5LG	12,149	3	0	2	135	12,662	3	0	2	141	12,908	3	0	2	143
				BLC3	8,438	0	0	2	94	8,794	0	0	2	98	8,966	0	0	2	99
				BLC4	8,715	0	0	3	97	9,083	0	0	3	101	9,260	0	0	3	103
				RCCO	8,515	1	0	2	94	8,874	1	0	2	98	9,047	1	0	2	100
				LCCO	8,515	1	0	2	94	8,874	1	0	2	98	9,047	1	0	2	100
				AFR	12,380	2	0	2	137	12,902	2	0	2	143	13,154	2	0	2	146
				T1S	17,545	2	0	3	128	18,285	2	0	3	133	18,642	2	0	3	136
				T2M	16,253	3	0	4	119	16,939	3	0	4	124	17,269	3	0	4	126
				13M	16,442	2	0	4	120	17,135	3	0	4	125	17,469	3	0	4	128
				T3LG	14,687	2	0	2	107	15,306	2	0	2	112	15,605	2	0	2	114
				T4M	16,687	2	0	4	122	17,391	3	0	5	127	17,730	3	0	5	129
				14LG	15,177	2	0	2	111	15,817	2	0	2	115	16,125	2	0	2	118
	1050		42714	IFIM	16,802	2	0	4	123	17,511	2	0	4	128	17,852	2	0	5	130
40	1050	P6	137W	15M	17,168	4	0	2	125	17,893	5	0	3	131	18,241	5	0	3	133
	1050			15W	17,44/	5	0	3	12/	18,183	5	0	3	133	18,537	5	0	3	135
				1510	11,218	4	0	2	120	17,944	4	0	2	131	18,294	4	0	2	134
				BLC3	12,252	0	0	3	8/	12,404	0	0	5	91	12,/0/	0	0	3	93
				BLC4	12,352	1	0	4	90	12,8/3	1	0	4	94	13,124	1	0	4	90
					12,007	1	0	2	00	12,576	1	0	2	92	12,021	1	0	2	94
				AED	17.545	2	0	2	170	12,370	2	0	2	122	12,021	ו ר	0	2	126
				TIS	20,806	2	0	3	120	21 683	2	0	3	127	22 106	2	0	3	129
				T2M	19.273	3	0	4	113	20.086	3	0	4	118	20 478	3	0	4	120
				T3M	19 497	3	0	5	114	20,319	3	0	5	119	20,715	3	0	5	120
				T3IG	17 416	2	0	2	102	18,151	2	0	2	106	18,504	2	0	2	108
				T4M	19,787	3	0	5	116	20.622	3	0	5	121	21.024	3	0	5	123
				T4LG	17,997	2	0	2	105	18,756	2	0	2	110	19.121	2	0	2	112
				TFTM	19,924	3	0	5	117	20,765	3	0	5	122	21,170	3	0	5	124
40	1300	P7	171W	T5M	20,359	5	0	3	119	21,217	5	0	3	124	21,631	5	0	3	127
				T5W	20,689	5	0	3	121	21,561	5	0	3	126	21,982	5	0	3	129
				T5LG	20,418	4	0	2	120	21,279	4	0	2	125	21,694	4	0	2	127
				BLC3	14,182	0	0	3	83	14,780	0	0	3	87	15,068	0	0	3	88
				BLC4	14,647	0	0	4	86	15,265	0	0	4	89	15,562	0	0	4	91
				RCCO	14,309	1	0	3	84	14,913	1	0	3	87	15,204	1	0	3	89
				LCCO	14,309	1	0	3	84	14,913	1	0	3	87	15,204	1	0	3	89
				AFR	20,806	2	0	3	122	21,683	2	0	3	127	22,106	2	0	3	129

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

LED Count Current (mA) Performance Package System Wates Distribution Type Image: Count (mA) Count (mA) </th <th colspan="6">Rotated Optics</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Rotated Optics																			
Lib Count (m) Performance Corrent (m) System Watts Performance Network <								30K					40K					50K		
Solution Control Contro Control <thcontrol< th=""> <th< th=""><th>LED Count</th><th>Drive</th><th>Performance Package</th><th>System Watts</th><th>Distribution Type</th><th></th><th>(30</th><th>00K, 70</th><th>CRI)</th><th></th><th></th><th>(40</th><th>00K, 70</th><th>CRI)</th><th></th><th></th><th>(50</th><th>00K, 70</th><th>CRI)</th><th></th></th<></thcontrol<>	LED Count	Drive	Performance Package	System Watts	Distribution Type		(30	00K, 70	CRI)			(40	00K, 70	CRI)			(50	00K, 70	CRI)	
30 530 P10 515 7,399 3 0 3 145 7,711 3 0 3 151 7,862 3 0 3 173M 66,33 3 0 3 135 7,144 3 0 3 140 7,268 3 0 3 171M 6,649 2 0 3 140 7,268 3 0 3 171M 6,649 2 0 3 144 7,476 3 0 3 144 7,476 3 0 3 145 7,667 3 0 2 148 7,992 3 0 2 148 7,992 3 0 2 150 7,217 3 0 2 144 3 0 3 107 7,857 3 0 3 107 7,867 3 0 3 107 7,867 3 0 3 107 </td <td></td> <td>current (mrt)</td> <td>ruchage</td> <td></td> <td></td> <td>Lumens</td> <td>В</td> <td>U</td> <td>G</td> <td>LPW</td> <td>Lumens</td> <td>В</td> <td>U</td> <td>G</td> <td>LPW</td> <td>Lumens</td> <td>В</td> <td>U</td> <td>G</td> <td>LPW</td>		current (mrt)	ruchage			Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW
30 530 P10 51W 6,854 3 0 3 140 7,283 3 0 3 30 530 P10 51W 6,194 2 0 2 122 6,455 2 0 2 122 6,656 2 0 3 144 7,366 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 2 144 7,67 3 0 2 144 7,60 3 0 3 0 3 0 3 0 2 145 7,667 3 0 1 149 7,74 3 0 3 0 3 0 3 0 3 103 5,33 3 0 3 103					TIS	7,399	3	0	3	145	7,711	3	0	3	151	7,862	3	0	3	154
30 530 P10 5)73 3 0 3 110 6,733 3 0 3 142 6,83 2 0 0 0 2 0 0 0 2 0 0 0 2 0					12M	6,854	3	0	3	135	7,144	3	0	3	140	7,283	3	0	3	143
30 530 P10 510 610					TRIG	6 194	2	0	2	120	6 4 5 5	2	0	2	142	6 581	2	0	2	145
30 530 P10 51W 17416 6,399 2 0 2 126 6,669 2 0 2 131 6,799 2 0 2 30 530 9 530 530 0 2 142 7,855 3 0 2 142 7,857 3 0 2 143 7,670 3 0 2 143 7,670 3 0 2 143 7,677 3 0 1 143 7,677 3 0 1 143 7,677 3 0 1 143 7,677 3 0 3 103 5,536 3 0 3 103 5,536 3 0 3 133 11 120 11 143 7,567 3 0 3 103 5,536 3 0 3 133 103 121 120 110 5,363 3 0 3 <					T4M	7.036	3	0	3	138	7,333	3	0	3	144	7.476	3	0	3	147
30 530 P10 51W IFIM 7,086 3 0 3 139 7,385 3 0 3 145 7,529 3 0 2 30 530 P10 51W 7,239 3 0 2 142 7,545 3 0 2 116 7,862 3 0 2 116 7,867 3 0 2 116 7,867 3 0 1 149 7,714 3 0 3 0 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3					T4LG	6,399	2	0	2	126	6,669	2	0	2	131	6,799	2	0	2	134
30 530 P10 51W T5M 7,239 3 0 2 142 7,657 3 0 2 143 7,692 3 0 2 T5W 7,357 3 0 1 143 7,667 3 0 1 149 7,716 4 0 2 BLC 7,260 3 0 3 199 5,256 3 0 3 103 5,338 3 0 3 BLC 5,043 3 0 2 100 5,333 0 2 104 5,477 0 0 2 104 5,477 0 0 2 104 5,477 0 0 2 104 5,477 0 0 3 13 9,71 3 3 0 3 134 9,413 3 0 3 13 9,211 3 0 3 13 9,21 3 0					TFTM	7,086	3	0	3	139	7,385	3	0	3	145	7,529	3	0	3	148
30 700 P11 66W 7,50 3 0 2 151 7,816 4 0 2 1 30 700 P11 66W 7,260 3 0 1 143 7,667 3 0 1 149 7,716 4 0 0 3 8L(3 5,043 3 0 3 102 5,428 3 0 3 107 5,534 3 0 3 0 3 107 5,534 3 0 3 107 5,534 3 0 3 10 5,407 0 0 2 104 5,407 0 0 2 104 5,407 0 0 3 115 7,616 4 0 3 115 1,61 3 0 3 1143 9,017 0 0 3 133 9,413 3 0 3 134 9,316 3 0	30	530	P10	51W	T5M	7,239	3	0	2	142	7,545	3	0	2	148	7,692	3	0	2	151
30 700 P1 68W 5,043 3 0 1 143 7,578 3 0 1 143 7,578 3 0 1 143 7,578 3 0 3 103 5,534 3 0 3 0 3 100 5,534 3 0 3 86(C0 5,089 0 0 2 100 5,303 0 0 2 104 5,407 0 0 2 ARR 7,399 3 0 3 145 7,711 3 0 2 104 5,407 0 0 2 ARR 7,399 3 0 3 138 9,753 3 0 3 133 9,413 3 0 3 TM 8,788 3 0 3 138 9,753 3 0 3 134 9,43 3 0 3 TM					T5W	7,357	3	0	2	145	7,667	3	0	2	151	7,816	4	0	2	154
30 700					I SLG	7,260	3	0	2	143	7,56/	3	0	2	149	5 250	3	0	2	152
30 700 P11 50 5					BLC3	5 208	2	0	2	102	5 4 28	3	0	2	105	5 534	3	0	2	105
LCC0 5,089 0 0 2 100 5,303 0 0 2 104 5,407 0 0 2 AFR 7,399 3 0 3 145 7,711 3 0 3 151 7,862 3 0 3 TIS 9,358 3 0 3 138 9,753 3 0 3 143 9,943 3 0 3 TIS 9,358 3 0 3 127 9,034 3 0 3 133 9,211 3 0 3 TIM 8,669 3 0 3 115 8,164 3 0 3 120 8,323 3 0 3 120 8,323 3 0 3 144 9,945 3 0 3 120 8,323 3 0 3 14 9,212 3 0 3 14 9,221 <td></td> <td></td> <td></td> <td></td> <td>RCCO</td> <td>5,089</td> <td>0</td> <td>0</td> <td>2</td> <td>102</td> <td>5,303</td> <td>0</td> <td>0</td> <td>2</td> <td>10/</td> <td>5,407</td> <td>0</td> <td>0</td> <td>2</td> <td>105</td>					RCCO	5,089	0	0	2	102	5,303	0	0	2	10/	5,407	0	0	2	105
AFR 7,399 3 0 3 145 7,711 3 0 3 151 7,862 3 0 3 11 1					LCCO	5,089	0	0	2	100	5,303	0	0	2	104	5,407	0	0	2	106
No No<					AFR	7,399	3	0	3	145	7,711	3	0	3	151	7,862	3	0	3	154
30 700 P11 68W 12M 8,669 3 0 3 127 9,034 3 0 3 133 9,211 3 0 3 T3M 8,768 3 0 3 129 9,138 3 0 3 134 9,316 3 0 3 T3M 8,768 3 0 3 115 8,164 3 0 3 136 9,455 3 0 3 T4M 8,899 3 0 3 119 8,435 3 0 3 124 8,599 3 0 3 T4LG 8,093 3 0 3 132 9,340 3 0 3 137 9,522 3 0 3 T5M 9,156 4 0 2 137 9,696 4 0 2 143 9,856 4 0 2 T5M <td></td> <td></td> <td></td> <td></td> <td>T1S</td> <td>9,358</td> <td>3</td> <td>0</td> <td>3</td> <td>138</td> <td>9,753</td> <td>3</td> <td>0</td> <td>3</td> <td>143</td> <td>9,943</td> <td>3</td> <td>0</td> <td>3</td> <td>146</td>					T1S	9,358	3	0	3	138	9,753	3	0	3	143	9,943	3	0	3	146
30 700 P11 68W 13IG 7,83 3 0 3 115 8,164 3 0 3 129 9,188 3 0 3 0 3 30 700 P11 68W 7,833 3 0 3 115 8,164 3 0 3 120 8,323 3 0 3 13IG 7,833 3 0 3 111 8,164 3 0 3 136 9,455 3 0 3 0 3 115 8,164 3 0 3 124 8,599 3 0 3 14IG 8,993 3 0 3 119 8,435 3 0 3 124 8,599 3 0 3 124 8,599 3 0 3 15 9,542 4 0 2 137 9,596 3 0 1 141					T2M	8,669	3	0	3	127	9,034	3	0	3	133	9,211	3	0	3	135
30 700 P11 68W 134 7,035 3 0 3 113 67,164 3 0 3 120 67,253 3 0 3 30 700 P11 68W 1446 8,099 3 0 3 131 9,744 3 0 3 136 9,455 3 0 3 1446 8,099 3 0 3 131 9,744 3 0 3 136 9,455 3 0 3 1446 8,099 3 0 3 132 9,340 3 0 3 137 9,522 3 0 3 155 9,156 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 1516 9,182 3 0 3 94 6,647 3 0 3 0 3 0<					I3M TRIC	8,/68	3	0	3	129	9,138	3	0	3	134	9,316	3	0	3	13/
30 700 P11 68W 14LG 8,093 3 0 3 119 8,435 3 0 3 124 8,599 3 0 3 30 700 P11 68W 14LG 8,093 3 0 3 119 8,435 3 0 3 124 8,599 3 0 3 30 700 P11 68W 175M 9,156 4 0 2 135 9,542 4 0 2 140 9,728 4 0 2 TSW 9,304 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 TSU 9,304 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 16 16,647 3 0 3 0 3 0 3 0 </td <td></td> <td></td> <td></td> <td></td> <td>TAM</td> <td>2 800</td> <td>2</td> <td>0</td> <td>3</td> <td>115</td> <td>9 274</td> <td>3</td> <td>0</td> <td>2 2</td> <td>120</td> <td>0,323</td> <td>3</td> <td>0</td> <td>3</td> <td>122</td>					TAM	2 800	2	0	3	115	9 274	3	0	2 2	120	0,323	3	0	3	122
30 700 P11 68W TFTM 8,962 3 0 3 132 9,340 3 0 3 137 9,522 3 0 3 30 700 F11 68W T5M 9,156 4 0 2 135 9,542 4 0 2 140 9,728 4 0 2 TSW 9,304 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 TSLG 9,182 3 0 1 135 9,569 3 0 1 141 9,756 3 0 3 BLC3 6,378 3 0 3 97 6,865 3 0 3 101 6,999 3 0 3 BLC4 6,587 3 0 2 95 6,707 0 0 2 99 6,838					T4LG	8.093	3	0	3	119	8,435	3	0	3	124	8,599	3	0	3	126
30 700 P11 68W T5M 9,156 4 0 2 135 9,542 4 0 2 140 9,728 4 0 2 T5W 9,304 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 T5U 9,304 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 T5LG 9,182 3 0 1 135 9,569 3 0 3 98 6,777 3 0 3 BLC3 6,378 3 0 3 97 6,865 3 0 3 101 6,999 3 0 3 RCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0					TFTM	8,962	3	0	3	132	9,340	3	0	3	137	9,522	3	0	3	140
T5W 9,304 4 0 2 137 9,696 4 0 2 143 9,885 4 0 2 T5LG 9,182 3 0 1 135 9,569 3 0 1 141 9,756 3 0 1 BLC3 6,378 3 0 3 94 6,647 3 0 3 98 6,777 3 0 3 BLC4 6,587 3 0 2 95 6,707 0 0 2 99 6,838 0 2 RCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 3 0	30	700	P11	68W	T5M	9,156	4	0	2	135	9,542	4	0	2	140	9,728	4	0	2	143
T5LG 9,182 3 0 1 135 9,569 3 0 1 141 9,756 3 0 1 BLC3 6,378 3 0 3 94 6,647 3 0 3 98 6,777 3 0 3 BLC4 6,587 3 0 2 95 6,707 0 0 2 99 6,838 0 3 2 RCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 AFR 9,358 3 0 3 138 9,753 3 0 3 143 9,943 3 0 3 T1S 13,247 3 0 3 128 13,806 3 0 3 14 14,075 3 0 3					T5W	9,304	4	0	2	137	9,696	4	0	2	143	9,885	4	0	2	145
BLC3 6,378 3 0 3 94 6,647 3 0 3 98 6,777 3 0 3 BLC4 6,587 3 0 3 97 6,865 3 0 3 101 6,999 3 0 3 RCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 AFR 9,358 3 0 3 138 9,753 3 0 3 143 9,943 3 0 3 T1S 13,247 3 0 3 128 13,806 3 0 3 134 14,075 3 0 3					T5LG	9,182	3	0	1	135	9,569	3	0	1	141	9,756	3	0	1	143
BLC4 6,87 3 0 3 97 6,865 3 0 3 101 6,999 3 0 3 RCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 LCC0 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 AFR 9,358 3 0 3 138 9,753 3 0 3 143 9,943 3 0 3 T1S 13,247 3 0 3 128 13,806 3 0 3 13 4 14,075 3 0 3 T2M 12,271 4 0 4 0 4 0 4 0 4 0 4 0 4 </td <td></td> <td>BLC3</td> <td>6,378</td> <td>3</td> <td>0</td> <td>3</td> <td>94</td> <td>6,647</td> <td>3</td> <td>0</td> <td>3</td> <td>98</td> <td>6,777</td> <td>3</td> <td>0</td> <td>3</td> <td>100</td>					BLC3	6,378	3	0	3	94	6,647	3	0	3	98	6,777	3	0	3	100
ICCO 6,50 0 0 2 55 6,707 0 0 2 59 6,838 0 0 2 ICCO 6,436 0 0 2 95 6,707 0 0 2 99 6,838 0 0 2 AFR 9,358 3 0 3 138 9,753 3 0 3 143 9,943 3 0 3 T1S 13,247 3 0 3 128 13,806 3 0 3 134 14,075 3 0 3 T2M 12,271 4 0 4 119 12,789 4 0 4 124 13,038 4 0 4					BLC4	6,58/	3	0	3	97	6,865	3	0	3	00	6,999	3	0	3	103
AFR 9,358 3 0 3 138 9,753 3 0 3 143 9,943 3 0 3 T1S 13,247 3 0 3 128 13,806 3 0 3 134 14,075 3 0 3 T2M 12,271 4 0 4 119 12,789 4 0 4 124 13,038 4 0 4					100	6 436	0	0	2	95	6,707	0	0	2	99	6,838	0	0	2	101
T1S 13,247 3 0 3 128 13,806 3 0 3 134 14,075 3 0 3 T2M 12,271 4 0 4 119 12,789 4 0 4 124 13,038 4 0 4					AFR	9,358	3	0	3	138	9,753	3	0	3	143	9,943	3	0	3	146
T2M 12,271 4 0 4 119 12,789 4 0 4 124 13,038 4 0 4					T1S	13,247	3	0	3	128	13,806	3	0	3	134	14,075	3	0	3	136
					T2M	12,271	4	0	4	119	12,789	4	0	4	124	13,038	4	0	4	126
T3M 12,412 4 0 4 12,935 4 0 4 12,935 TVL					T3M	12,412	4	0	4	120	12,935	4	0	4	125	13,187	4	0	4	128
13Lb 11,089 3 0 3 107 11,256 3 0 3 112 11,282 3 0 3 TAM 12					13LG	11,089	3	0	3	10/	11,556	3	0	3	112	11,/82	3	0	3	114
Him 12,397 4 0 4 122 13,120 4 0 4 0 4 Til 1 14.7 3 0 3 111 11040 2 0 2 116 111772 2 0 2					14M	12,397	4	0	4	122	13,120	4	0	4	12/	12,204	4	0	4	129
TETM 12,686 4 0 4 123 13,221 4 0 4 128 13,479 4 0 4					TFTM	12.686	4	0	4	123	13.221	4	0	4	128	13,479	4	0	4	130
30 1050 P12 103W T5M 12,960 4 0 2 125 13,507 4 0 2 131 13,770 4 0 2	30	1050	P12	103W	T5M	12,960	4	0	2	125	13,507	4	0	2	131	13,770	4	0	2	133
T5W 13,170 4 0 3 127 13,726 4 0 3 133 13,994 4 0 3					T5W	13,170	4	0	3	127	13,726	4	0	3	133	13,994	4	0	3	135
T5LG 12,998 3 0 2 13,546 3 0 2 131 13,810 3 0 2					T5LG	12,998	3	0	2	126	13,546	3	0	2	131	13,810	3	0	2	134
BLC3 9,029 3 0 3 87 9,409 3 0 3 91 9,593 3 0 3 DL 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4					BLC3	9,029	3	0	3	87	9,409	3	0	3	91	9,593	3	0	3	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					BLC4	9,324	4	0	4	90	9,/18	4	0	4	94	9,907	4	0	4	96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						9 110	1	0	2	88	9,495	1	0	2	92	9,080	1	0	2	94
AFR 13,247 3 0 3 128 13,806 3 0 3 134 14,075 3 0 3					AFR	13,247	3	0	3	128	13,806	3	0	3	134	14,075	3	0	3	136
T1S 15,704 3 0 3 122 16,366 3 0 3 127 16,685 4 0 4					T1S	15,704	3	0	3	122	16,366	3	0	3	127	16,685	4	0	4	130
T2M 14,547 4 0 4 113 15,161 4 0 4 118 15,457 4 0 4					T2M	14,547	4	0	4	113	15,161	4	0	4	118	15,457	4	0	4	120
T3M 14,714 4 0 4 114 15,335 4 0 4 119 15,634 4 0 4					T3M	14,714	4	0	4	114	15,335	4	0	4	119	15,634	4	0	4	121
T3LG 13,145 3 0 3 102 13,700 3 0 3 106 13,667 3 0 3 T4H 14,025 4 0 4 12 15,667 3 0 3					T3LG	13,145	3	0	3	102	13,700	3	0	3	106	13,967	3	0	3	108
I4MI I4,953 4 0 4 I16 I5,363 4 0 4 I21 I5,867 4 0 4 TALC 13,582 2 0 2 105 14,155 2 0 2 110 14,421 2 0 2					T4M	14,933	4	0	4	116	15,563	4	0	4	121	15,86/	4	0	4	123
TFTM 15,02 5 0 5 0 5 10 14,451 3 0 3					TFTM	15,039	4	0	4	105	15,673	4	0	4	122	15,979	4	0	4	12
30 1300 P13 129W T5M 15,364 4 0 2 119 16,013 4 0 2 124 16,325 4 0 2	30	1300	P13	129W	T5M	15,364	4	0	2	119	16,013	4	0	2	124	16,325	4	0	2	127
T5W 15,613 5 0 3 121 16,272 5 0 3 126 16,589 5 0 3					T5W	15,613	5	0	3	121	16,272	5	0	3	126	16,589	5	0	3	129
T5LG 15,409 3 0 2 120 16,059 3 0 2 125 16,372 4 0 2					T5LG	15,409	3	0	2	120	16,059	3	0	2	125	16,372	4	0	2	127
BLC3 10,703 4 0 4 83 11,155 4 0 4 87 11,372 4 0 4					BLC3	10,703	4	0	4	83	11,155	4	0	4	87	11,372	4	0	4	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					BLC4	11,054	4	0	4	86	11,520	4	0	4	89	11,745	4	0	4	91
KLLU IU,80U I U Z 84 II,255 I U Z 87 II,475 I U 3 IGGO 10,800 1 0 2 84 I1,255 1 0 2 87 11,475 1 0 2						10,800	1	0	2	84	11,256	1	0	2	87	11,4/5	1	0	3	89
AFR 15,704 3 0 3 122 16,366 3 0 3 127 16,685 4 0 4					AFR	15,704	3	0	3	122	16,366	3	0	3	127	16,685	4	0	4	130

nLight Control - Sensor Coverage and Settings

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 0 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and pedestrian areas.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED driver is mounted in direct contact with the casting to promote low operating temperature and long life. Housing driver compartment is completely sealed against moisture and environmental contaminants (IP66). Vibration rated per ANSI C136.31 for 1.5G. Low EPA (0.44 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

COASTAL CONSTRUCTION (CCE)

Optional corrosion resistant construction is engineered with added corrosion protection in materials and/or pre-treatment of base material under super durable paint. Provides additional corrosion protection for applications near coastal areas. Finish is salt spray tested to over 5,000 hours per ASTM B117 with scribe rating of 10. Additional lead-times may apply.

OPTICS

Precision-molded proprietary silicone lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in 3000 K, 4000 K or 5000 K (70 CRI) configurations. 80CRI configurations are also available. The D-Series Size 0 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine(s) configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L80/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX0 LED area luminaire has a number of control options. DSX Size 0, comes standard with 0-10V dimming driver. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. PIR integrated motion sensor with on-board photocell feature field-adjustable programing and are suitable for mounting heights up to 40 feet. Control option BL features a bi-level device that allows a second control circuit to switch all light engines to either 30% or 50% light output.

nLIGHT AIR CONTROLS

The DSX0 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Integral mounting arm allows for fast mounting using Lithonia standard #8 drilling and accommodates pole drilling's from 2.41 to 3.12" on center. The standard "SPA" option for square poles and the "RPA" option for round poles use the #8 drilling. For #5 pole drillings, use SPA5 or RPA5. Additional mountings are available including a wall bracket (WBA) and mast arm (MA) option that allows luminaire attachment to a 2 3/8" horizontal mast arm.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP66 rated. Rated for -40°C minimum ambient.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

WARRANTY

5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

Front View

Side View

Luminaira	Unight (U)	Width (W)	Donth (D)	Side Condu	it Location	Weight
Lummaire	neight (n)	wiath (w)	veptii (v)	Α	В	weight
WPX1	8.1" (20.6 cm)	11.1" (28.3 cm)	3.2" (8.1 cm)	4.0" (10.3 cm)	0.6" (1.6 cm)	6.1 lbs (2.8kg)
WPX2	9.1″ (23.1 cm)	12.3" (31.1 cm)	4.1" (10.5 cm)	4.5" (11.5 cm)	0.7″ (1.7 cm)	8.2 lbs (3.7kg)
WPX3	9.5" (24.1 cm)	13.0" (33.0 cm)	5.5" (13.7 cm)	4.7" (12.0 cm)	0.7" (1.7 cm)	11.0 lbs (5.0kg)

	•		
Ord	lerind	Infor	mation

Series		Color 1	ſemperature	Voltage		Options		Finish	
WPX1 LED P1 WPX1 LED P2 WPX2 LED WPX3 LED	1,550 Lumens, 11W ¹ 2,900 Lumens, 24W 6,000 Lumens, 47W 9,200 Lumens, 69W	30K 40K 50K	3000K 4000K 5000K	MVOLT 347	120V - 277V 347V ³	(blank) E4WH E14WC PE	None Emergency battery backup, CEC compliant (4W, 0°C min) ² Emergency battery backup, CEC compliant (14W, -20°C min) ² Photocell ³	DDBXD DWHXD DBLXD Note : For	Dark bronze White Black other options, consult factory.

Note: The lumen output and input power shown in the ordering tree are average representations of all configuration options. Specific values are available on request.

FEATURES & SPECIFICATIONS

INTENDED USE

The WPX LED wall packs are designed to provide a cost-effective, energy-efficient solution for the one-for-one replacement of existing HID wall packs. The WPX1, WPX2 and WPX3 are ideal for replacing up to 150W, 250W, and 400W HID luminaires respectively. WPX luminaires deliver a uniform, wide distribution. WPX is rated for -40°C to 40°C.

CONSTRUCTION

WPX feature a die-cast aluminum main body with optimal thermal management that both enhances LED efficacy and extends component life. The luminaires are IP66 rated, and sealed against moisture or environmental contaminants.

ELECTRICAL

Light engine(s) configurations consist of high-efficacy LEDs and LED lumen maintenance of L90/100,000 hours. Color temperature (CCT) options of 3000K, 4000K and 5000K with minimum CRI of 70. Electronic drivers ensure system power factor >90% and THD <20%. All luminaires have 6kV surge protection (Note: WPX1 LED P1 package comes with a standard surge protection rating of 2.5kV. It can be ordered with an optional 6kV surge protection). All photocell (PE) operate on MVOLT (120V - 277V) input.

Note: The standard WPX LED wall pack luminaires come with field-adjustable drive current feature. This feature allows tuning the output current of the LED drivers to adjust the lumen output (to dim the luminaire).

NOTES

 All WPX wall packs come with 6kV surge protection standard, except WPX1 LED P1 package which comes with 2.5kV surge protection standard. Add SPD6KV option to get WPX1 LED P1 with 6kV surge protection. Sample nomenclature: WPX1 LED P1 40K MVOLT SPD6KV DDBXD

- Battery pack options only available on WPX1 and WPX2.
- Battery pack options only available on W1X1 and W1X2.
 Battery pack options not available with 347V and PE options.
 - . .

Introduction

INSTALLATION

WPX can be mounted directly over a standard electrical junction box. Three 1/2 inch conduit ports on three sides allow for surface conduit wiring. A port on the back surface allows poke-through conduit wiring on surfaces that don't have an electrical junction box. Wiring can be made in the integral wiring compartment in all cases. WPX is only recommended for installations with LEDs facing downwards.

LISTINGS

CSA Certified to meet U.S. and Canadian standards. Suitable for wet locations. IP66 Rated. DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at <u>www.designlights.org/QPL</u> to confirm which versions are qualified. International Dark Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

WARRANTY

5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at:

www.acuitybrands.com/customerkesources/terms_and_conditions.aspx.

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25°C. Specifications subject to change without notice.

COMMERCIAL OUTDOOR

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com © 2020-2022 Acuity Brands Lighting, Inc. All rights reserved.

Notes			

The WPX LED wall packs are energy-efficient, costeffective, and aesthetically appealing solutions

for both HID wall pack replacement and new construction opportunities. Available in three sizes, the WPX family delivers 1,550 to 9,200 lumens with

The WPX full cut-off solutions fully cover the footprint of the HID glass wall packs that they replace, providing a neat installation and an

upgraded appearance. Reliable IP66 construction and excellent LED lumen maintenance ensure a long service life. Photocell and emergency egress battery options make WPX ideal for every wall

EXAMPLE: WPX2 LED 40K MVOLT DDBXD

a wide, uniform distribution.

mounted lighting application.

Performance Data

Electrical Load

Luminaire	Input Power (W)	120V	208V	240V	277V	347V
WPX1 LED P1	11W	0.09	0.05	0.05	0.04	0.03
WPX1 LED P2	24W	0.20	0.12	0.10	0.09	0.07
WPX2	47W	0.39	0.23	0.20	0.17	0.14
WPX3	69W	0.58	0.33	0.29	0.25	0.20

Projected LED Lumen Maintenance

Data references the extrapolated performance projections in a 25° C ambient, based on 6,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	50,000	75,000	100,000
Lumen Maintenance Factor	>0.94	>0.92	>0.90

HID Replacement Guide

Photometric Diagrams

Luminaire	Equivalent HID Lamp	WPX Input Power
WPX1 LED P1	100W	11W
WPX1 LED P2	150W	24W
WPX2	250W	47W
WPX3	400W	69W

Lumen Output

Luminaire	Color Temperature	Lumen Output
WPX1 LED P1	3000K	1,537
	4000K	1,568
	5000K	1,602
WPX1 LED P2	3000K	2,748
	4000K	2,912
	5000K	2,954
WPX2	3000K	5,719
	4000K	5,896
	5000K	6,201
WPX3	3000K	8,984
	4000K	9,269
	5000K	9,393

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-50°C (32-122°F).

Ambient	Ambient	Lumen Multiplier	
0°C	32°F	1.05	
5℃	41°F	1.04	
10°C	50°F	1.03	
15°C	59°F	1.02	
20°C	68°F	1.01	
25°C	77°F	1.00	
30°C	86°F	0.99	
35°C	95°F	0.98	
40°C	104°F	0.97	

Emergency Egress Battery Packs

The emergency battery backup is integral to the luminaire — no external housing or back box is required. The emergency battery will power the luminaire for a minimum duration of 90 minutes and deliver minimum initial output of 550 lumens. Both battery pack options are CEC compliant.

Battery Type	Minimum Temperature Rating	Power (Watts)	Controls Option	Ordering Example
Standard	0°C	4W	E4WH	WPX2 LED 40K MVOLT E4WH DDBXD
Cold Weather	-20°C	14W	E14WC	WPX2 LED 40K MVOLT E14WC DDBXD

To see complete photometric reports or download .ies files for this product, visit the Lithonia Lighting WPX LED homepage. Tested in accordance with IESNA LM-79 and LM-80 standards

WPX2 LED

WPX1 LED P2

WPX3 LED

Mounting Height = 12 Feet.

